
A Service-Based Web Portal for Integrated Reverse Engineering and Program

Comprehension

A Thesis

Submitted to the Faculty

of

Drexel University

by

William M. Mongan

in partial fulfillment of the

requirements for the degree

of

Master of Science in Computer Science

August, 2008

c© Copyright August, 2008
William M. Mongan.

This work is licensed under the terms of the Creative Commons Attribution-
ShareAlike license. The license is available at http://creativecommons.org/

licenses/by-sa/2.0/.

ii

Acknowledgements

Many thanks to my advisor, Dr. Spiros Mancoridis, for years of support, advice and guidance in

my research and development. Thanks also to Dr. William Regli, who has also supported me

and provided me with a domain on which to test and apply my research. My acknowledgments to

my thesis committee: Drs. Spiros Mancoridis, Bruce Char, Yuanfang Cai and Adam Fontecchio.

Particular gratitude goes to Dr. Eli Fromm and Dr. Adam Fontecchio for supporting me as an NSF

GK-12 Fellow throughout my graduate work. Special thanks to Christina Kirby and to the members

of the SERG lab, especially Maxim Shevertalov and Boguste Hameyie, for bouncing ideas with me,

for a neverending supply of “have you tried’s,” and for reviewing this document.

iii

Dedications

To my family, who have supported me in all of my interests and endeavors. I have been truly blessed

with their guidance; without them, life as I know it would not have been possible.

iv

Table of Contents

List of Tables . ix

List of Figures . x

Abstract . xiii

1. Introduction. 1

2. Background . 8

2.1 The Original REportal System . 8

2.1.1 Original REportal Architecture . 10

2.2 Service Oriented Computing . 15

2.2.1 Advantages of SOA .. 17

2.2.2 Data Flow. 17

2.2.3 Service Invocation . 18

2.2.4 Implementing the Client and the Server . 18

2.3 Related Work . 20

2.3.1 Legacy System Migration to Service Oriented Architectures . 20

2.3.2 Software Visualization Tools for Program Comprehension . 22

2.3.3 Service Integration . 23

3. User Perspective . 24

3.1 User Management . 24

3.2 Project Management . 26

3.3 Source Code Browsing . 32

3.4 Static Analysis . 32

3.5 Graphical Display . 32

3.6 Dynamic Analysis via Aspect Instrumentation. 37

3.7 Text Search . 41

v

3.8 Software Metrics . 44

3.9 Software Forensics to Determine Code Authorship . 45

4. Developer Perspective . 50

4.1 REportal Web Client . 50

4.2 REportal Web Services . 54

4.2.1 Methodology for Creating a Tool-Centric Service . 55

4.2.2 Identification of Core Functionality . 56

4.2.3 Data Type Design . 56

4.2.4 Design and Implement the Web Service Wrapper . 56

4.3 REportal Tool-Centric Services. 58

4.3.1 Project Management Service . 58

4.3.2 Static Analysis . 63

4.3.3 Bunch Clustering . 63

4.3.4 Metrics . 67

4.3.5 Source Code Browser . 67

4.3.6 Text Search . 69

4.3.7 Dynamic Analysis via Aspect Instrumentation . 71

4.3.8 Software Forensics to Determine Code Authorship . 75

4.4 Database for User and Project Management . 79

4.5 XML Repository for Storing REportal Project Data . 82

4.5.1 Querying the XML Repositories . 83

5. Testing and Validation . 87

5.1 REportal Testing . 87

5.1.1 Service Testing . 88

5.1.2 Unit Testing . 94

5.1.3 User Interface Testing . 95

vi

5.2 REportal User Study . 97

6. Case Study: Adding a Service to the Portal . 99

6.1 Forensics Application. 99

6.2 Forensics High-Level API . 102

6.3 Designing the Service WSDL .. 105

6.3.1 Implementing the Service WSDL on the Server-Side . 107

6.3.2 Implementing the Service WSDL on the Client-Side . 107

6.4 Case Study Results . 108

6.5 Opportunities for Automation . 108

7. Conclusion and Future Work . 110

7.1 Benefits . 110

7.1.1 Maintenance . 110

7.1.2 Deployment . 111

7.1.3 Heterogeneous Clients. 111

7.1.4 Contributions to SOA Research . 112

7.1.5 Reverse Engineering as a Business Process . 113

7.2 Future Work . 113

7.2.1 WSDL-Wizard Interface Design for Automated Composition . 114

A. SOA Overview . 116

A.1 Data Type Descriptions: XML Schema . 116

A.1.1 Document Type Declaration (DTD) . 118

A.1.2 Schema . 119

A.2 Service Description Language: WSDL .. 120

A.2.1 definitions Section. 120

A.2.2 types Section . 121

A.2.3 message Section . 122

vii

A.2.4 portType Section . 123

A.2.5 binding Section . 124

A.2.6 service Section . 126

A.3 Quality of Service and Security Constraints . 127

A.4 Service Discovery: UDDI . 127

A.4.1 Using UDDI . 128

A.5 Business Process Execution Language: BPEL . 128

A.5.1 BPEL Development Environments . 129

A.6 Using Semantics for Automated Service Discovery and Composition . 131

A.6.1 DARPA Agent Markup Language (DAML-S): Semantic Markup for Web Ser-

vices . 132

B. Installation and Deployment. 135

B.1 Building from Source Code . 135

B.2 Installation . 137

B.2.1 JDK .. 137

B.2.2 Application Server. 138

B.2.3 Database Setup . 142

B.2.4 REportal Configuration . 144

B.2.5 Starting and Stopping REportal . 146

B.3 Usage Notes . 147

C. Service WSDL and XML Schema Definitions . 150

C.1 Project Manager Service . 150

C.2 BAT Static Analyzer Service . 155

C.3 Bunch Clustering Service . 157

C.4 Forensics Service to Determine Code Authorship . 158

C.5 Metrics Service. 160

viii

C.6 Source Code Browser Service . 161

C.7 Text Search Service. 162

C.8 Dynamic Analysis via Aspect Instrumentation Service . 164

Bibliography . 166

ix

List of Tables

2.1 Simple Java code example: First.java . 12

2.2 Simple Java code example: Second.java . 14

2.3 The Module Dependency Graph (MDG) representing dependencies that exist between

First.java, Second.java and the standard Java libraries. 15

4.1 Example BAT XML document for a Java Hello World program .. 82

4.2 MDG XML Query on a BAT Java class repository. 84

4.3 Reachability XML Query on a BAT Java class repository . 86

B.1 Commands to install an SSL certificate . 141

B.2 Commands to configure the mysql database . 142

B.3 Sample reportal.ini file . 145

B.4 Sample java.policy file used by the JDK .. 149

x

List of Figures

1.1 Example tabular report view of a software relationship query in the original REportal 2

1.2 Example graphical view of a software relationship query in the original REportal 3

2.1 The graphical display of the MDG depicted in Table 2.3 . 14

3.1 The REportal User Login use case . 25

3.2 The REportal User Registration use case . 25

3.3 REportal Login screen . 26

3.4 REportal Project List screen . 27

3.5 The REportal Add Project use case . 28

3.6 REportal Add Project screen . 28

3.7 The REportal Upload Project Data use case. 29

3.8 REportal Upload Project screen . 30

3.9 The REportal Remove Project use case . 31

3.10 REportal Open Project screen . 31

3.11 The REportal Source Code Browser use case . 33

3.12 REportal Source Code Browser screen featuring cross references in the code 34

3.13 The REportal Static Analysis use case . 35

3.14 REportal Tabular MDG screen. 36

3.15 REportal Graphical MDG screen . 36

3.16 REportal Reachability Query screen . 37

3.17 Collapsed view of a class relationship graph . 38

3.18 Expanded view of a class relationship graph . 38

3.19 The REportal ClusterNav use case . 39

3.20 The REportal Dynamic Analysis use case . 40

3.21 REportal Dynamic Analysis aspect generation screen . 41

xi

3.22 REportal Dynamic Analysis trace upload screen . 42

3.23 REportal Dynamic Analysis graphical result screen . 42

3.24 The REportal Text Search use case . 43

3.25 REportal Text Search screen . 44

3.26 The REportal Metrics Report use case . 45

3.27 REportal Metrics Report screen . 46

3.28 The REportal Forensics to Identify Code Authorship feature use case . 47

3.29 REportal Forensics learning set upload screen . 48

3.30 REportal Forensics tabular report screen. 49

4.1 Generic layered structure of REportal’s underlying services . 51

4.2 JSP navigation diagram of the REportal web client . 52

4.3 Distribution of services among application servers in REportal . 55

4.4 The presentation layer invokes a legacy tool using only its identified core functionality,
exposed via a web service wrapper. 57

4.5 The Project Manager service definition. 61

4.6 The Project Manager data types and structure . 62

4.7 The BAT Static Analyzer service definition . 64

4.8 The BAT Static Analyzer data types and structure . 65

4.9 The Bunch Clustering service definition . 66

4.10 The Bunch Clustering service data types and structure. 68

4.11 The Metrics service definition . 69

4.12 The Metric Service data types and structure . 70

4.13 The Sorcerer Source Code Browser service definition . 71

4.14 The Sorcerer Source Code Browser service types and structure . 72

4.15 The Text Search service definition . 73

4.16 The Text Search Service data types and structure . 74

xii

4.17 Activity diagram detailing the creation and execution of a dynamic analysis aspect, and
its subsequent viewing on REportal . 75

4.18 The Dynamic Analysis via Aspects service definition . 76

4.19 The Dynamic Analysis via Aspects service data types and structure . 77

4.20 The Author Identification via Software Forensics service definition . 78

4.21 The Author Identification via Software Forensics service data types and structure 80

4.22 REportal database structure . 81

5.1 SoapUI service testing tool . 90

5.2 The Axis tcpmon SOAP port monitoring tool . 92

5.3 Selenium web browser recorder plugin for web testing . 96

6.1 Setting up the Forensics GUI tool to use two learning profiles and analyze a testing set . . 100

6.2 Setting up the Forensics GUI tool to use a database of metrics coupled to the learning
profiles previously created . 101

6.3 Class diagram showing the dependencies between the Forensics application and the RE-
portal Forensics service via a mediating “high-level” API . 104

6.4 Interactions between the Forensics tool API and our Forensics service high-level API 106

A.1 Hierarchy of primary web service components.. 117

A.2 Syntactic Structure of the WSDL 1.1 Language . 133

A.3 Relationship among WSDL part definitions . 134

B.1 Sample Java control panel settings. 147

xiii

Abstract
A Service-Based Web Portal for Integrated Reverse Engineering and Program Comprehension

William M. Mongan

Advisor: Spiros Mancoridis, Ph.D.

REportal is a web-based reverse engineering portal web site that provides developers with access

to a suite of reverse engineering and program comprehension tools via a web browser. REportal

was designed to simplify system maintenance by supporting the addition and upgrading of tools

without involving the end user. However, the software tools and server technologies used became

deprecated so quickly that it was not possible to take full advantage of the architectural vision.

Using a service-oriented architecture, we abstract the process flow of the system from the underlying

tools, enabling a wizard-style method of adding services to the system, and simplifying maintenance

through automation.

This new architecture enables easy installation, deployment, and service management from the

user’s perspective, and easy service addition and portal maintenance from the developer’s perspec-

tive. We conducted a case study involving the addition of a legacy tool to the portal as a service,

and a description of the usability benefits of a web-based portal that integrates several features for

software analysis.

1

1. Introduction

Practitioners are often placed into large software development projects that began before their

involvement. These systems may have been programmed by a number of developers over time who

are either no longer available, or are too busy to train the new developers. This, coupled with a lack

of up-to-date documentation or formal specification, makes it difficult for new developers to assist

on the project in a way that leaves it maintainable in the future.

As a result, the software engineering community has created various tools to aid in program com-

prehension and software architecture. These tools aim to generate reports or visual representations

of software systems, thus reconstructing the as-built specifications of that software system in lieu of

accurate paper documentation. Further, tools exist that analyze a system’s architecture to extract

design patterns, UML representations, or subsystem relationships within the system. This enables

developers (or even end users) to discern the architecture of the system.

Although there exists a wide variety of tools enabling such software analyses, they typically

represent a heterogeneous suite. Some tools have simple command-line pipe and filter architectures

for a particular platform, while others have an elaborate API for some language. Moreover, many

tools have overlapping features, though each tool has a proprietary output format. As a result,

obtaining a comprehensive view of a software system requires considerable tool integration on the

part of the user.

REportal1 [53] is a Reverse Engineering portal web site that facilitates software architecture

decomposition, program analysis, and understanding with a minimal amount of user intervention.

The vision behind REportal was that the tool configuration would occur behind the application

server, and that REportal would act as a thin client that exposed the features of those services.

Tools were presented to the user as common tasks with a familiar web browser interface. The result

1http://reportal.cs.drexel.edu/

2

was a cohesive set of features that allowed for entity browsing, querying relationships in the system

(for example, inheritance graphs and call graphs), performing transitive reachability queries using the

results of relationship queries, and browsing the cross-referenced source code of discovered entities

in the system, as seen in Figure 1.1. These features were exposed mostly through the CIAO [31]

command-line Unix tool suite from AT&T Labs Research. A Java-based API for Bunch [52] was

used to cluster these results in order to automatically discover software modules and subsystems, and

GraphViz [38] was invoked to display graphical results in an applet view, as shown in Figure 1.2.

Source code browsing and text search are available, and source code metrics such as Cyclomatic

Complexity and inheritance tree depth are provided via additional tools.

Figure 1.1: Example tabular report view of a software relationship query in the original REportal

3

Figure 1.2: Example graphical view of a software relationship query in the original REportal

Despite the utility and ease-of-use benefits of the portal, there were a number of challenges

pertaining to the maintenance and extensibility of the system. The original REportal was written

as a single Java Servlet, which resulted in a tight coupling between user management, the tools, and

the user interface. In addition, some of the primary tools are no longer maintained and, thus, do

not effectively parse new language extensions or JDK versions. The system was designed with tool

upgrade in mind, but the tight coupling of the portal to the tools and the interface made complete tool

overhaul difficult. The portal was also tightly coupled to the host on which it executed. REportal

tools had to reside on the same platform, and tool output was parsed without any adaptation,

normalization or standardization. For example, the source code database repository tool would

output a text-based report that was read in by the portal for web display. Any changes to the tool,

or to its output, requires a change to the interface that reads it. In some cases, the tools themselves

required specific and non-standard programs to execute. For example, the source code database

builder tool required a specific binary build of ksh that was not publicly available. This made the

4

original portal difficult to install on other hosts. Survivability of the portal relied on few changes in

the tools being used, and robustness of the host on which it is run. It was also overly cumbersome to

install the portal behind a corporate firewall because the tools were so tightly dependent on the host

environment. In addition, web interface tools were based on old JavaScript technology and, due

to the nonstandard nature of browser rendering and display at the time, these technologies would

fail or work on different browsers. As a result, it was also necessary to couple the portal to the most

popular browsers, and modify its behavior based on the browser on which it was run. As a result of

this coupling between the interface and underlying tools, it is difficult to exchange tools with new

ones, or to upgrade existing tools to ones that evolve with the languages they analyze.

These challenges are mostly attributed to the underlying architecture of the original REportal

and the technologies used. Because it is software engineering best practice to maintain a system that

is robust to these issues; in light of the frequent changes and evolution of the underlying tools being

offered to the user, it is necessary to re-architect the portal in a way that eases the integration of

new or updated legacy tools and that eases the deployment of the portal on an arbitrary web server.

To promote this easy extensibility as well as flexibility in the use of the underlying tools, we propose

a distributed service Oriented Architecture (SOA) for the new REportal. This not only facilitates

much easier maintenance and extensibility on the system, but it also serves as a microcosm that

enables further research in automated service orchestration.

The redesigned REportal [57] offers services for each of the tools enabling changes to an individual

tool without requiring extensive modifications to the architecture of the system as a whole. Because

each service returns XML messages, it is easier to adapt new tools into the system, replace old tools

with new tools whose services output similar XML data, and write heterogeneous (i.e., non-web)

clients for the portal. Each of these enhancements yields lower maintenance costs and ease of system

comprehension. Furthermore, the initial redesign involves composing these services by hand; that

is, the data production services such as the Static Analyzer and Dynamic Analyzer call the Bunch

Clustering service to return a clustered graph. This approach was chosen because the tools were

5

not known a priori, and it was more efficient to start with a baseline before introducing refactorings

to incorporate unknown services without prior knowledge. Moreover, because the tools are services,

it is not necessary (though it is common) to host the tools on the same server that houses the

user’s projects and the presentation layer. Heterogeneous tools may be hosted on web servers on

the platforms on which they run. The new portal architecture places fewer dependencies on the

underlying tools or host. This automates installation and deployment, makes service relocation a

matter of configuration, and makes service replacement or addition a matter of adaptation to an

XML schema.

It is now possible to think of the tools as services that together provide a set of business tasks

and solutions. These business tasks include commands like:

• What is the call graph through the system for feature X?

• What are the major subsystems of this system?

• What are some of the software design measures like Cyclomatic Complexity Number (CCN),

comment rate, etc.?

• What is the runtime feature trace involving these classes?

• Who wrote each part of the code?

Because of the service-oriented architecture that was chosen to implement the new portal, the

user interface is separated from the tools themselves. The user interface parses the XML results

that are sent back from each service. Thus, changing services requires making a different service call

and adapting that XML result instead. Once that data is obtained, it is possible to use it as the

basis for calling other services automatically, which would not otherwise be immediately possible

when running the tools manually. For example, a user’s project can be automatically supplied to a

forensics tool that determines code authorship. The portal could, for example, predict the most likely

author of each file in the user’s project from the set of other users’ projects uploaded to REportal.

6

As another example, a runtime analysis feature provides call traces of one or more features of the

user’s program. However, this search can be focused to eliminate “noise,” or insignificant library

calls that would appear in the analysis. Since there is a static analysis feature built into the portal,

that feature is executed and the result is used to assist the user in choosing which methods should

be traced by the dynamic analyzer.

This approach provides not only a service-based re-architecting of REportal, which provides many

decoupling benefits as described in this chapter, but it also introduces an architectural pattern by

which tool-based portals can easily to be built. New tools and legacy tools can be integrated into a

service-based portal, using the techniques described in this document. This integration previously

required much more effort in our own experience hosting a tool-based portal, to such a degree that

it was easier to rewrite the entire system to meet evolving needs. A successful portal architecture

would enable tool addition and integration in a significantly decreased amount of time. As described

in Chapter 6, the manual addition of a service to the portal has become an easier task; moreover,

the exercise has made automated service integration a possibility (this is described in Section 7.2).

This paradigm has positive implications for a number of stakeholders, including:

• The software engineering community: The software engineering community gains a por-

tal architecture to promote program understanding through reverse engineering; this provides

automated software engineering practices, tools and techniques to the general software com-

munity. All too often these practices are overlooked or underutilized due to their perceived

complexity or cost.

• Software developers: Developers gain a tool suite through which they can analyze and

understand software systems. This tool suite can grow and evolve with the tools, techniques

and languages they support. A positive end-product of this effort would be a web “home page”

like SourceForge or Google for software engineering.

• Developers and users of heterogeneous tool suites: Program comprehension through

7

reverse engineering was chosen as a specific domain for this tool suite because of its relevance

to the software engineering community and to software developers. Apart from this domain,

however, this effort provides a “best practice” for architecting a portal of decoupled heteroge-

neous tool suites, enabling simplified maintenance by those hosting the portal, and transparent

invocation by the end user.

The rest of this document is organized as follows: we provide background and related work in

Chapter 2; the user’s and the developer’s perspectives are described in Chapters 3 and 4, respectively;

testing and validation are covered in Chapter 5; a case study on the ease of adding services to the

SOA-based portal is discussed in Chapter 6; we discuss benefits of the portal and conclude in

Chapter 7. For more information on Service Oriented Architectures, see Appendix A. Installation

and deployment of REportal is described in Appendix B. Finally, the REportal service definitions

are included in Appendix C.

8

2. Background

The current REportal is a re-architecture of an existing system with software maintenance in

mind. However, it also relies heavily on the Service Oriented Architecture paradigm, which enables

easier software maintenance, loosely coupled components, and a plug-in style framework for adding

new tools or enabling web service standards on existing tools.

In this chapter, we provide background on each of these topics. We discuss the original REportal

in Section 2.1, Service Oriented Architecture in Section 2.2, and Related Work on portals and

research in SOA in Section 2.3.

2.1 The Original REportal System

The first version of REportal [53] was built upon Java Servlets, a Java web server technology

that enables web applications to integrate presentation-layer code with business logic. In this way,

it is possible to present a web page to the user while maintaining state information about that user.

Thus, the REportal web pages are Java source code files that print HTML onto a web browser.

Interwoven with this web display code are the REportal subsystems. Unfortunately, this inherent

coupling between the presentation-layer display code and the business logic code caused a high degree

of dependency between the portal and the tools, which proved too difficult to maintain in light of

the rapidly evolving reverse engineering tools. The fundamental goal of REportal is to provide a

heterogeneous tool suite to the user so that the user needs not install, learn how to use, or manage

the underlying tools. The portal provided the core functionality of each tool in an intuitive web

interface, greatly reducing the learning curve for performing reverse engineering; however, it merely

shifted, rather than reduced the burden of tool maintenance to the REportal developers.

Re-architecting REportal into a Service Oriented Architecture (introduced in Section 2.2 and

described in technical detail in Appendix A) reduced the burden of individual tool maintenance in

9

the following ways:

• Tool Upgrade: As tools evolve, it is necessary to update REportal. Under the original

architecture, this required changes to the presentation layer and to the business logic layer,

which is akin to a complete rewrite of the feature.

• Tool Replacement: Many of the tools provided through REportal are open source from the

research community; therefore, they tend to change ownership or have ambiguous ownership.

As a result, they may not undergo the maintenance required to keep them current with existing

languages. As a result, it becomes necessary to seek or develop new tools to provide the desired

functionality. These tools often have new interfaces and data models; because the data model

was coupled to the business logic, and thus to the presentation layer, this too resulted in a

complete rewrite of that feature in REportal.

• Packaging and Deployment: REportal, as a Java Servlet web application, was easily pack-

aged into a single jar file for distribution. If one could simply package the tools along with this

jar, the entire system could be deployed instantly. However, the tools themselves contained

dependencies. Particularly, many of the tools were shell scripts or Linux binary applications

that relied on rare proprietary versions of Korn Shell. As a result, one had to distribute this

particular binary of Korn Shell, which restricted the types of platforms that could run RE-

portal. Because REportal’s presentation layer was coupled to the tools, it was not possible to

deploy the jar on a separate server from the tools; therefore, the entire system was restricted by

this dependency. Moreover, Java support for executing shell commands was new and unstable,

causing some tools to lock up during execution or leave runaway processes on the host that

were unstoppable from within REportal (which wasted memory and CPU resources). Several

corporate clients of REportal wanted to analyze proprietary systems behind their corporate

firewall to maintain trade secrecy; however, this was not feasible under the original REportal

architecture, given the tools and resources available at that time.

10

• Tool Addition and Scalability: Adding tools was not as difficult, as this required simply

adding a new set of classes to the portal front end, and integrating them with the presentation

layer for display. Then, the tool called or invoked the process that performed the desired anal-

ysis, returning its result to the presentation subsystem. However, it was difficult to integrate

new tools with existing ones, enabling a more comprehensive analysis report than the user

could generate manually. A decoupled data model would enable REportal to adapt tools to

accommodate the integration of their features.

The new “REportal 2.0” [57] described here concerns itself less with the reverse engineering tools

and services provided by REportal; rather, it aims to provide an architecture for developing a web

portal of services, using reverse engineering as a relevant domain example.

2.1.1 Original REportal Architecture

In this section we describe the original features offered by REportal, and a brief overview of its

architecture.

Ciao Source Code Static Analyzer

Ciao is a graph-based source code analyzer for Java, C and C++. This type of source code analy-

sis is referred to as static analysis because it is performed on the source code only (a static source),

rather than by observing the behavior of the program or system during its execution. Ciao [31] pro-

duces a SQL data repository using information from the source code. This database is then queried

to find system entities and the interrelations among them. It is also possible to create Bunch-

compatible module dependency graphs using a helper tool that executes a sequence of Ciao queries.

Ciao is queried via command-line tools that enable users to determine class inheritance hierarchies,

data flow, call graphs, and reachability (or dependency trees). These views show developers how a

change to one part of the system might impact other subsystems.

11

Bunch Clustering Tool

Bunch [52, 56] is a clustering tool intended to aid the software developer and maintainer in un-

derstanding, verifying, and maintaining a source code base. Bunch relies solely on the information

contained in a Module Dependency Graph (MDG) file, considering nodes as program units or mod-

ules, such as files or classes, and edges between the nodes as calls or relationships between those

modules, such as function calls or inheritance relationships. An MDG is a directed graph created

based on queries to the source code repository generated by Ciao (see Section 2.1.1) via a shell

script. With this graph, Bunch finds what a “good” clustering for the system is (thus helping when

documentation of the code is nonexistent or outdated), and it can also use pre-defined clusters to

measure or improve the quality of the system’s clustering.

Bunch processes the MDG and produces, as output, a clustered graph that includes all of the

original source code and dependencies clustered into logical subsystems. The output from Bunch can

be visualized by several popular graph visualization tools such as Dotty [48] and Tom Sawyer [35].

REportal forwards the graph output from Bunch to Dotty for visualization.

Metrics Report Tool

REportal provides an internally developed metrics report to show developers parts of code that

might need maintenance attention. For example, undercommented code or overly complex code

is measured by employing static analysis techniques. A method with many control structures like

loops, switch statements, and conditionals contains more paths of execution than a simpler method

and, therefore, is more prone to bugs or unanticipated execution paths.

Text Search Tool

Simple text-search primitives based on the grep utility are provided on the source code base.

REportal shows all instances of a specific string or pattern, along with the file in which it appears

and the line number. This is useful to detect simple (and very common) instances of code cloning.

12

Source Code Decompilation

Because many of these tools use static source code analysis techniques, it is more important

to upload a system’s source code for analysis rather than the compiled binary. In a situation

where binary code is all that is available, REportal automatically decompiles Java bytecode into its

equivalent and near-original source code representation (except for comments). This enables source

code analysis when only binary Java byte-code is available.

Example: Generating an MDG Graph from Java Code

To understand the MDG format generated and used by most of the tools in the original REportal,

consider the following simple Java example: two source files are given: First.java in Table 2.1 and

Second.java in Table 2.2. In this example, we manually identify dependencies between the classes

to generate an MDG representing only dependencies between classes (that is, a dependency between

a class and a method will be represented a dependency between that class and the class that owns

the method).

Table 2.1: Simple Java code example: First.java

1: public class First {

2: private static int theValue;

3:

4: public static void main(String[] args) {

5: theValue = 5;

6:

7: Second theSecond = new Second(theValue);

8:

9: theSecond.helloWorld();

10: }

11: }

In this code, it can be seen that the First class invokes a method in the Second class. Specifically,

line 9 of First.java invokes the helloWorld method in Second. But it is also the case that the

13

First class instantiates a new object of type Second, resulting in a call to the constructor for Second.

This is an additional dependency between First and Second. In the MDG format, we represent

an Invoke relationship between the First and Second classes as First Second invoke. Thus the

MDG is a very simple file format, that nonetheless represents a labeled directed graph.

Reading on, we find no invocations in the Second class to First, but rather between Second

and the Java System.out library, via a call to println on line 10. However, there really exists two

dependencies here: one to the java.lang.System class, and the other to the java.io.PrintStream

class. Although it is not shown explicitly here, the System.out class is actually of type PrintStream.

What has actually happened is that Second has obtained a reference to the System object, and then

invoked a method (println) of one of its objects (out). These dependencies are represented as

a get dependency between Second and java.lang.System, and as a invoke dependency between

Second and java.io.PrintStream.

Finally, both the First and Second classes invoke initialization code common to all objects and

stored in the java.lang.Object class. This is, therefore, a dependency between each class and

java.lang.Object, which is expected in the Java language. Adding these dependencies, we are

left with the MDG file shown in Table 2.3. The corresponding graphical representation is shown in

Figure 2.1.

This was a simple example in a number of aspects: first, it only considered dependencies between

classes, and not between classes and variables, classes and methods, methods and methods, and so

on. These were all combined and abstracted into inter-class dependencies, placing these dependencies

at a very high level. More detailed analysis would clearly take more time. Moreover, there were only

two classes in this example, which hardly makes it a candidate for automated reverse engineering

for program comprehension. Nevertheless, a few points are illustrated: first, we described how to

construct an MDG from source code and what is contained therein, and second, we illustrated that,

even for simple code, it is possible to overlook some dependencies that a machine-generated analysis

would not miss.

14

Table 2.2: Simple Java code example: Second.java

1: public class Second {

2: private int numTimes;

3:

4: public Second(int _numTimes) {

5: numTimes = _numTimes;

6: }

7:

8: public void helloWorld() {

9: for(int i = 0; i < numTimes; ++i) {

10: System.out.println("Hello World!\n");

11: }

12: }

13: }

Sample MDG ClusterGraph

N-SS-L0-java.lang.Object

N-SS-L0-Second

java.lang.Object

First

Second

java.io.PrintStream java.lang.System

Figure 2.1: The graphical display of the MDG depicted in Table 2.3

15

Table 2.3: The Module Dependency Graph (MDG) representing dependencies that exist between
First.java, Second.java and the standard Java libraries.

First java.lang.Object invoke

First Second invoke

First Second invoke

Second java.lang.Object invoke

Second java.lang.System get

Second java.io.PrintStream invoke

2.2 Service Oriented Computing

Service Oriented Computing (SOC)1 is a movement toward an implementation-independent ar-

chitecture for distributed computing. “Service Oriented Architecture (SOA) is a paradigm for or-

ganizing and utilizing distributed capabilities that may be under the control of different ownership

domains” [59]. Rather than an object-based design and functionality, SOA raises the level of ab-

straction toward higher level business logic. For example, consider the following classic scenario [59]:

A small company is currently using separate in-house proprietary
systems to process orders, charge credit cards, check inventory and
ship products. Data is exchanged from one department to the
other via hand-written e-mails, though the inventory and shipping
departments were recently integrated and sharing messages using
a proprietary format over TCP.

Although SOA allows for a bottom-up design that is amicable to the integration of legacy systems,

the real benefit is realized from a top-down, implementation-independent, approach. By using XML

schemas to define abstract data types and an XML document to define business-logic operations

in terms of these abstract types, a complete interface is derived for a system that naturally hides

implementation details and business secrets.

In this example, departments only expose the highest level business logic that each needs to share.

For example, the shipping department would only need to know that the credit card transaction

was approved and the shipping address provided by the customer. It would not need to know the

1For a detailed introduction to SOA and its associated technologies, see Appendix A.

16

amount of the transaction, the credit card number, or how the sales department actually verified

the information. Similarly, the sales department does not need to know any implementation details

about the shipping department. Services provide only their public interfaces to one another, and

through their design, this information hiding can be achieved automatically. Through the SOA’s

design, this information is filtered from the passed messages as they travel from service to service,

or hidden completely through selective XML encryption. Moreover, if the shipping department was

outsourced to a third party company, only the service contract and details limited to implementing

the service contract need to be changed. Naturally, that third party shipping company does not wish

to expose its private information through its shared business processes, such as its sub-contractors

and costs, and this information would also be hidden by the service contract through the design of

the SOA. The extent to which a service’s functionality is exposed for use is called its visibility.

When we think of SOA in its most recent stage, we tend to think first of web services – a rather

young platform. While the web services paradigm has gained significant popularity in both the soft-

ware architecture and the IT infrastructure camps, SOA predates web services and is implemented

by a number of existing technologies.

Noteworthy architectures such as CORBA and RPC may cause some to wonder why SOA is

considered an emerging paradigm. It is easy to interpret concepts like web services as simply

the latest trend. Service descriptions using RPC can be found in CORBA using the Interface

Definition Language (IDL) specification [58]. Like XML based services, IDL is language independent

and allowed for a heterogeneous implementation. Although the XML messages used by SOA web

services are verbose, while IDL specifications more closely resemble Java interface definitions, it is

easy to generate compliant service invocations, with or without the aid of code stubs or middleware.

Regardless of the underlying architecture, services are easily designed and provide a clear separation

between message passing, transport, and functionality. In addition, they separate public business

functionality from private business secrets and implementation.

In truth, SOA consists of a number of components and supporting technologies. In its most recent

17

incarnation, SOA technologies include XML Schema (Described in Section A.1), WSDL (Described

in Section A.2), SOAP (Described in Section A.2.5), UDDI (Described in Section A.4), standards

for QoS and security, and so on. These are described in detail in Appendix A.

The point is that while, in this generation, web services are often synonymous with SOA, SOA

is an architectural style that can be realized in a number of ways [68].

To provide a high level overview of services, their relationships and role in software develop-

ment, the OASIS Committee on SOA released the SOA Reference Model [59]. The SOA-RM aims

to provide an architecture and technology independent description of SOA, services, policies and

descriptions.

2.2.1 Advantages of SOA

Services are popular because they are discoverable, composable and dynamically bound; they are

modular, self-contained and loosely coupled; and they can be easily moved from host to host without

disrupting availability [58]. Services “emphasize a distinction between a capability and the ability

to bring that capability to bear. While both needs and capabilities exist independently of SOA, in

SOA, services are the mechanism by which needs and capabilities are brought together.” [59]

2.2.2 Data Flow

Data flow through an SOA system is also described by a structured XML representation and

is implemented through some type of message passing. There are many implementations of such

message passing in existence, including Message Oriented Middleware (MOM) packages and the

Simple Object Access Protocol (SOAP), but this is a transport level implementation detail that is

not prescribed by SOA itself.

18

2.2.3 Service Invocation

Method calls are based on XML documents. An XML document is formed and addressed to the

service being hosted. The content of the document is a structure that matches the structure and

contains all the data parameters mandated by the service’s contract. The service receives that mes-

sage, executes the method that implements the service, and returns the result in another document

as prescribed by the service contract. In either case, the underlying transport is often transparent to

the programmer, as the communications implementation is often automatically generated, leaving a

code stub that the programmer must implement and call as a normal object method.

2.2.4 Implementing the Client and the Server

Once the WSDL file is formed, a server and/or client implementation may be created. When we

consider the usefulness of web services, we see that it is often the case that the client and server are

implemented by two different parties [42]. Because WSDL forms a service contract between a client

and a server, client code can be generated that conforms to the WSDL and calls the appropriate

web service. After all, the WSDL contains all the information about data types, messages, methods

to call, parameters to pass and expected return values. Finally, the <service> section also shows

the physical location with which to interact and communicate. It is possible to obtain the WSDL

of a deployed web service from the application server on which it resides; therefore, it becomes

straightforward to write a client to interact with service providers such as eBay, Google, Amazon,

and so on.

All of this holds true for server implementation as well. As a service contract, the WSDL says

nothing about the implementation details of the system. Nonetheless, a great deal of implementation

can be generated from the WSDL alone.

It turns out that tools exist to generate this code on both sides automatically. Apache Axis,

.NET, and others provide tools to generate code stubs that conform to a given WSDL definition.

The developer must simply provide the implementation of that stub, which is essentially the private

19

algorithms used to execute the advertised functionality.

This idea gives rise to a few design strategies:

Contract-Last Design Because it is possible to generate code from an existing WSDL definition,

it stands to reason that one could also generate WSDL from existing code. This turns out to be

the case. This is a good strategy for legacy systems, but contains the pitfall that developers will

ignore the all-important service design phase in favor of making any and all functionality within an

object-oriented system into web services. This is a bottom-up design.

Contract-First Design This strategy is the one described so far in this document and in most

literature. The WSDL is defined first, followed by the code stubs. This is a top-down design and is

ideal for new services to promote information hiding and a separation of concerns.

Meet-In-The-Middle This approach is meant to combine the best of both strategies, and involves

generating the WSDL from existing code stubs (for example, data types), and then hand-writing the

remaining WSDL to generate the final code implementation. This avoids the need to write verbose

XML Schema definitions of data types by hand.

Independent of the development path chosen, it is easy to separate the private business logic

from the public business processes and services being offered. This has been made clear by the

advantages of WSDL design previously discussed. It is possible to write the private business logic

as a standalone enterprise application, and then link it to the generated web service via an adapter

layer. The role of the adapter layer is to take the data from web service requests (this data is

packaged in messages typed according to the WSDL), convert it into its individual parameters (or

pass it along as a whole), and call the enterprise application functionality. The same is done with

the values returned from the enterprise application. The benefit here is that if the web service

ever changes (for example, new functionality is desired, new parameters are needed, or data types

change), only the adapter layer needs to be changed on the server end.

20

The client would be re-generated from the new resulting WSDL, and an adapter layer on the

client application would provide a convenient buffer from these changes as well. In the case of

the client, a simple JSP based frontend could be created that calls the web service directly. The

generated WSDL client code is often so transparent that the invocation often appears to be simply

a local method call.

2.3 Related Work

For many, re-engineering a software system into an SOA translates into opening an existing

system into an IDE, and invoking the “create web service” feature to create a highly customized

and proprietary “service” that simply executes the underlying code.

This type of “automated service creation” is not the spirit of this work. In fact, users of this

“create web service” IDE feature often create web services for each class in their system. Our

project, instead, aims to create web services that wrap around entire legacy systems; exposing the

most coarse-grained functionality (for example, the behavior of the main() function routine) as a

single web service with a relatively small number of service interfaces. To understand this process

better, we use the reverse engineering domain (and the existing REportal system) as our case study.

In this section, we describe related research in this area.

2.3.1 Legacy System Migration to Service Oriented Architectures

The idea of migrating a legacy system to an SOA has been explored in the literature. For

example, one related project provides a mechanism to migrate grid application components to web

services automatically [36]. Another introduces a wrapper technique similar to our own for migrating

legacy systems to an SOA. Their approach uses a finite state machine and a terminal emulator to

allow for the migration of interactive tools such as the Pine mail client and text editor [29]. Our

goal, however, is to migrate legacy distributed systems, or to migrate a number of legacy tools

into a cohesive distributed suite of services, and then create a business process that finds, selects,

21

coordinates and executes those services on the fly. The multi-server distributed approach is selected

for two reasons: primarily due to the heterogeneous nature of the tools, but also to support parallel

execution of the tools in question.

The idea of exposing tool functionality, however, is not a new one. The Purdue University

Network Computing Hubs (PUNCH) [43] project exposes computer architecture simulation and

design tools for education via a web portal. Like the original REportal, the spirit of PUNCH is

to provide access to these tools regardless of the user’s physical location or available computing

resources. The user simply needs a web browser, and the tools themselves are executed primarily on

the server(s), which may be distributed without the user’s intervention. PUNCH works by specifying

the inputs required by a particular tool, and how to map those inputs to the tool’s interface, via

HTML and CGI “templates” specified by a high level language. Process flow is enabled by a finite

state machine structure. This is very similar to both the old and the new REportal; however, the

SOA-based REportal enables scalability to utilize new services by searching UDDI registries for new

tools to which to bind. In this sense, it is not necessary to deploy a tool to the system, but instead to

point the system to the tool. Further, while PUNCH allows for “cross-enterprise” tool deployment,

it is not clear if PUNCH supports a heterogeneous tool suite, including Windows-based applications

as well as UNIX tools.

Legacy migration to SOA is also discussed by Sneed [65, 64] and Lewis [51]. Sneed points out

that new architectures such as SOA cannot be successful if they cannot “take [legacy] programs

along.” The problem is compounded by the use of programming languages that have dependencies

on the user environment; particularly, those that also provide the runtime environment. Despite this

complexity and dependency, it is desirable to create services that are simple and easy to use. He

proposes an automated tool that wraps legacy code in WSDL that exposes the high level features,

and then the creation of higher level, more abstract and simple services (based on features) that

invoke them. Lewis describes the Service-Oriented Migration and Reuse Techique (SMART) [51].

SMART is a methodology for migrating legacy systems to SOA, involving the identification of

22

stakeholders and functionality, the trade-offs between certain design choices including middleware

and architecture, and finally planning the migration to an SOA.

2.3.2 Software Visualization Tools for Program Comprehension

Standalone software visualization tools such as CodeCrawler [50] also exist that explore the

structure of the software system as a whole. The Visualization Architecture for Reuse (VARE) [26]

system creates an XML repository of a software system, which they query to create Scalable Vector

Graphics (SVG) that visualize that system. REportal, however, aims to use an existing tool suite to

generate and to standardize the software repository, then query and view the result in an interactive

view. The XML Data Storage Environment (XDSE) [25] integrates with VARE and is of particular

interest to our work, because it proposes an XML format for storing program traces, and a model

for querying that XML repository using XQuery. The XML query engine is exercised using a web

service and JSP client. This idea is consistent with the spirit of REportal as a whole, and REportal

provides a number of tools for program understanding and exposes them as services. As such, XSDE

and VARE are likely good service components integrated and exposed by REportal.

Other research in automatic software modularization includes work that clusters based on data

use by subsystems [41]. Data bindings are identified in which a module writes to a variable that

is read by another module. This idea serves as the basis for identifying potentially interesting

subsystem interactions for clustering purposes. This technique can be applied to legacy systems to

simplify program understanding and software maintenance, by identifying subsystems that contain

clusters of entities that should be inspected when making modifications to a particular software

module [69]. REportal uses Bunch [52] as an implementation of software clustering because it creates

a hierarchy of clustered graphs as an XML repository that is easily queried by the visualization tool.

23

2.3.3 Service Integration

Finally, there is new research in the area of service integration via Service Component Architec-

ture (SCA). SCA has a number of emerging implementations, including Apache Tuscany [4], and

allows for the integration of existing services via service metadata that describes their interfaces. The

Java Orchestration Language Interpreter Engine (JOLIE) [10] also provides a high level language

for service orchestration via the WS-BPEL standard. It is a goal of REportal to contribute to this

area of research by providing a baseline and a case study for service integration and orchestration.

24

3. User Perspective

In this section, we describe the core tools that have been wrapped into REportal services. These

are represented by the services depicted in Figure 4.1. The approach taken in designing the REportal

use interface is that only the highest-level features of the tools should be exposed. Users of REportal

are interested in answering specific questions or gaining a general understanding of a software system.

They need not spend time configuring custom attributes of the tools, as their primary objective is

to obtain reports with predictable settings. Therefore, REportal consists of features that are report-

oriented, or goal-oriented; it is not intended to be highly customizable (although it could easily be

made this way, since the underlying tools present numerous customization options). The goal of this

approach is that it is straightforward to exercise the common features of REportal.

3.1 User Management

The user management features are largely logistical services provided by REportal; as such, they

are mostly transparent to the user. However, there are a few features that are invoked by the user

in order to gain access to the portal.

First, the user must log in to REportal. This is outlined in the use case depicted by Figure 3.1.

The user’s password is encrypted and, along with the username, compared to the database. If the

credentials match, the user is permitted to log in. Otherwise the user is notified of the failure and

returned to the home page. Every page of REportal begins by checking the user credentials and

forces the user to login if the credentials do not exist.

The user may also register at this screen by providing personal information that is stored in the

database. Currently, this information is not used except for the username and password. The User

Registration use case is shown in Figure 3.2. Users may log in and register on the same screen: the

screenshot is given in Figure 3.3.

25

Fill in Username
and Password

Login

Login
successful

Notify user
of login
failure

Figure 3.1: The REportal User Login use case

Register

Fill in user details

Success!
Proceed to Login

Notify of failure

Username available? Username already taken?

Figure 3.2: The REportal User Registration use case

26

Figure 3.3: REportal Login screen

3.2 Project Management

Once the user has logged in, the user is greeted with a portal of projects owned by that user (see

Figure 3.4). The user may add new projects, analyze existing ones, delete them, and so on.

REportal automatically adds a demo project for the user when the user first registers for an

account. However, it is expected that the user will wish to add a project soon after logging in.

There is a link on the projects page that enables the user to add an empty project. The process is

shown in Figure 3.5, and a screenshot is given in Figure 3.6.

The user may specify a project name and language (C, C++ or Java). Immediately upon adding

the project, the user is presented with a link to upload code to the project for inspection. The

user may select a ZIP or JAR file to upload, and the file is unzipped into the user’s directory for

manipulation on the project page. The use case is shown in Figure 3.7, and the screenshot is given

in Figure 3.8. If the file is unzipped successfully, the user is notified and taken back to the project

27

Figure 3.4: REportal Project List screen

28

User Login

Add Project

Specify project
name and language

User taken to
upload code page

Figure 3.5: The REportal Add Project use case

Figure 3.6: REportal Add Project screen

29

page.

Add Project

Browse for jar
file or code

Code is unzipped
and associated
with the project

Figure 3.7: The REportal Upload Project Data use case

Now, the user may either remove or open the project. To remove the project (or perform

other administrative options), the user may right-click on the project, as detailed in the use case

in Figure 3.9. When the user opens the project, the user is presented with the suite of tools made

available by the portal, as shown in Figure 3.10.

In the event that a non-source jar is uploaded to REportal, some features like the source code

browser and text searching will not return any meaningful values. For this reason, REportal invokes

the Jode [9] Java decompiler to decompile the classes in the jar when the project is first opened.

The files are placed into the user’s project directory so that decompilation need not happen again.

30

Figure 3.8: REportal Upload Project screen

31

User right clicks
project

User clicks
"remove"

Project is removed
and user is

notified

User Login

User created at
least one project

Figure 3.9: The REportal Remove Project use case

Figure 3.10: REportal Open Project screen

32

3.3 Source Code Browsing

One of the first things a user may wish to do with a newly opened project is inspect its source

code. The Source Code Browser provides a cross-referenced and annotated view of the source

code. The Source Code Browser displays source code such that entities within the system are

hyperlinks. Variable references or method calls can be clicked on, taking the user to their definition

and implementation elsewhere in the project. Clicking on the arrow to the right of the entity

brings up a context menu (see Figure 3.12). This context menu allows users to obtain entity usage

information at the bottom of the display, including which classes call a method or use the variable,

etc. Entities are listed in a column on the left side of the display, and are also hyperlinks into the

source code.

The Source Code Browsing use case is given in Figure 3.11.

3.4 Static Analysis

Next, it is helpful to obtain a graphical view of the software system. This helps to bring perspec-

tive to the relationships found by browsing the source code of the software system. Inheritance trees,

call graphs, and transitive reachability queries can all be performed by static analysis. One can list

just the entities of the software system as well; these are reported in tabular form as there are no

relationships to draw between them. The static analysis features are evident in the use case outlined

in Figure 3.13. For the other queries, the results are given in tabular form (see Figure 3.14), and in

graphical form in the form of a clustered entity-relationship graph (see Figure 3.15). An example

transitive Reachability Query is also shown in Figure 3.16.

3.5 Graphical Display

Graphical display of query results is obtained by visualizing GXL graphs, with clusters repre-

sented by special nodes that can be clicked to expand them into their full graph view. This is

33

User Login

User has created
and opened

a project

Source Code Browser

Source code browser
web pages are
generated, and

user clicks "Display
Source Browser"

User navigates
source code files

User right-
clicks an

entity and obtains
a usage report

User left-clicks
an entity to view

its definition in the source.

Figure 3.11: The REportal Source Code Browser use case

34

Figure 3.12: REportal Source Code Browser screen featuring cross references in the code

accomplished with a tool called ClusterNav, and allows for visualization of the software system at

various levels of abstraction. The tool runs as a Java applet at the JSP presentation layer. Examples

of this graphical output are depicted in Figures 3.17 and 3.18.

Clusternav performs XML queries on the GXL [70] graph produced by Bunch. As an XML

graph format, GXL represents the graph as a hierarchy of subgraphs, yielding a tree of graphs that

represents “clusters of clusters” of nodes. By double-clicking on these clusters the user can expand

or collapse clusters into a single node view, causing the graphical display to represent the entire

graph at various levels of abstraction; for example, a single cluster can be displayed at the full-detail

level, while the remaining clusters are completely collapsed. The cluster nodes are color coded using

a spectrum from green to red, comparing the relative number of nodes or sub-clusters within each

cluster.

The functionality of the cluster viewer is summarized in the use case given by Figure 3.19.

35

User Login

User has created
and opened

a project

View Static
Analysis Reports

User selects
entire source

code repository,
or a subset

User creates
an MDG of

classes, methods,
variables, or all
relationships

Tabular and
graphical report

is displayed

User creates
reachability

query from an
entity, or a

reverse
reachability query

to an entity

User creates
an entity query
report, listing

variables, methods
and classes

in the project

Tabular report
is displayed

Figure 3.13: The REportal Static Analysis use case

36

Figure 3.14: REportal Tabular MDG screen

Figure 3.15: REportal Graphical MDG screen

37

Figure 3.16: REportal Reachability Query screen

3.6 Dynamic Analysis via Aspect Instrumentation

The relationship queries offered by Static Analysis are helpful, but they are often supersets of

what the user is looking for. In other words, static analyzers produce a lot of “noise” in their

reports. This is because static analyzers do not often detect all of the “dead code,” or code that is

not reachable, within the system.

Moreover, the static analyzer shows artifacts and relationships that exist within the source code.

They do not analyze code on a per-feature basis (for example, just code responsible for saving a

file). Static reachability queries help to reduce some of this noise if it is known where the feature

is implemented in the code. However, assuming this is the first time the software system is being

inspected, it is not likely that the user will know this a priori.

For this type of query, Dynamic Analysis provides a more accurate view of the system. Dynamic

analyzers inspect a software system at runtime, so an as-built view of the system is obtained. A call

trace is not obtained simply by reading what the source code would do, but rather by executing one

or more features of the software system and observing what the system does. This would give, for

example, the most accurate call trace for that feature. For this reason, dynamic analysis is often

used to augment data collected from static analysis.

38

Figure 3.17: Collapsed view of a class relationship graph

Figure 3.18: Expanded view of a class relationship graph

39

User Login

User has created
and opened

a project

User executes
a use case that

requires
graphical display

ClusterNav Cluster
Viewer appears
with graphical

display on the right,
and a textual-tree

representation on the
left

Figure 3.19: The REportal ClusterNav use case

40

However, for security reasons, it is impossible to allow an unknown user to upload arbitrary code

to a server and then execute it. A different approach is required, and is outlined in the use case

shown in Figure 3.20.

User Login

User has
created and

opened a project

Dynamic Analysis

User selects
methods to be
instrumented
for dynamic

analysis

User downloads
aspect file

to be woven
into the user program

User weaves
aspect into user

program and
executes one or more

features of the program

User uploads
"output.txt" file,
generated by the

aspect during execution,
back to REportal on the

main Aspect screen

"output.txt" MDG
is clustered and

displayed graphically

Figure 3.20: The REportal Dynamic Analysis use case

Aspect-Oriented Programming (AOP) [33] is used to instrument the code with logging code. This

logging code keeps a trace in a file of every method that is called during the system’s execution. The

user selects one or more of the methods in the project (see Figure 3.21), and the aspect is generated

and downloaded.

The aspect is woven into the program by downloading AspectJ [33] and using the ajc compiler to

build the software system along with the downloaded aspect file. The resulting bytecode is executed

41

Figure 3.21: REportal Dynamic Analysis aspect generation screen

as normal, and normally the user will execute one or only a few features so that the resulting trace

file is small and focused. The trace file output.txt is generated automatically, and this file is the call

trace graph that resulted from executing the program. This file is uploaded back to REportal as

shown in Figure 3.22.

The graph is clustered much like a relationship query in Section 3.4, and displayed to the user

(see Figure 3.23).

3.7 Text Search

A more focused search can be obtained by searching for specific strings or regular expression

patterns that exist in the source code. The Text Search feature enables this, and its use case is

outlined by Figure 3.24. The user enters the search string or regular expression pattern, selects a flag

indicating case sensitivity or insensitivity, and the results are displayed in a table (see Figure 3.25).

42

Figure 3.22: REportal Dynamic Analysis trace upload screen

Figure 3.23: REportal Dynamic Analysis graphical result screen

43

User Login

User adds at least
one project

User opens a
project

Text Search

Enter grep
search string

Select case
sensitive

or insensitive

Search results
are displayed

in tabular form

Figure 3.24: The REportal Text Search use case

44

Figure 3.25: REportal Text Search screen

3.8 Software Metrics

Once the software system is understood by browsing the source code and exercising the static and

dynamic analysis features, software maintenance and auditing can be focused by running a metrics

report. Metrics data yield information about the size of an inheritance tree, number of methods

in a class, complexity of a class (measured by the number of control forks in the code, such as

conditionals, loops, etc.), comments in a source file, and so on. Classes or files that are outliers, are

overly complex, or lack commenting may be candidates for further investigation and/or refactoring.

This enables the software developer to focus the investigation, and thus save time in refactoring or

re-architecting the system. The metrics report may result in a list of methods or classes that require

maintenance; the developer may wish to combine this analysis with a series of reachability queries

on these classes or methods to determine what other parts of the software system might be impacted

as a result of this maintenance. Thus the developer can also be more careful in performing these

more focused maintenance tasks.

45

The use case for running the metrics report is given in Figure 3.26, and an example screenshot

is shown in Figure 3.27.

User Login

User has created
and opened

a project

Create Metrics
Report

Metrics Report
is displayed

in tabular form

Figure 3.26: The REportal Metrics Report use case

3.9 Software Forensics to Determine Code Authorship

Finally, the software developer may wish to predict who authored different files within the project.

Alternatively, one may need to resolve an intellectual property dispute by determining likely code

authorship. REportal provides a feature, developed in-house [47, 49], that produces a tabular report

indicating the predicted author of each file.1 Usage of the Forensics feature is outlined in Figure 3.28.

In order for the Forensics feature to predict which authors wrote which files, the Forensics

program must be given a set of possible authors from which to choose. Along with this, the program

must be given a set of code samples from each author. With these samples, the program generates

1This feature is described in more detail in the case study in Chapter 6.

46

Figure 3.27: REportal Metrics Report screen

a “profile” for each author that includes each author’s coding style. This profile is generated by

running a series of metrics reports on each user’s sample code.

To provide this information to REportal, the user creates a ZIP file containing a series of directo-

ries. Each directory corresponds to a possible author, and the directory name is used as the author’s

name. This file is uploaded to REportal through the Forensics feature as shown in Figure 3.29.

REportal unzips this file, creates the profiles, and then runs the metrics reports on the user’s

project files. The closest profile that matches the metrics reports run on each file is predicted as

the author. Because some matches may be closer than others, the Forensics feature also gives a

confidence value, indicating to what degree the user is predicted to be the most likely author of

this file. It is important to recall that this prediction is done only on the users provided in the

ZIP file; it is possible that the actual author is not included in this set, and thus prediction is

impossible. Regardless, it is possible to mispredict the author for a number of reasons (for example,

the programmer used a different IDE which resulted in a different code style, or multiple authors

contributed to one file), and this is the reason for the confidence factor. The final report is given in

47

User Login

User has created
and opened a

project

Forensics Report

User creates
ZIP file containing
one directory per

known author, in which
source files known to be
written by that author

are contained

User uploads
this ZIP file

to REportal as
the "learning set"

Tabular report is displayed
showing, for each file,

the predicted author from the
learning set, and the

confidence with which that
author was chosen from the list

Figure 3.28: The REportal Forensics to Identify Code Authorship feature use case

48

Figure 3.29: REportal Forensics learning set upload screen

tabular form and is shown in Figure 3.30.

So far, we have covered the usage details of REportal and a summary of its architectural benefits.

In Chapter 4, we discuss the REportal architecture from a developer’s perspective.

49

Figure 3.30: REportal Forensics tabular report screen

50

4. Developer Perspective

The approach taken to compose the new REportal is a tool-centric one. Rather than building a

presentation layer that is coupled to the tools, we instead create a generic presentation framework

that accepts and queries XML documents, using tools wrapped as web services. These XML doc-

uments may be repositories of software systems, Module Dependency Graphs (MDG), call graph

representations, and so on. If a new tool is integrated, it is only necessary to represent the tool’s

output as an XML document and query it at the presentation layer for display. Graphical output is

created by the Bunch clustering system, accepting an MDG graph as input and outputting a Graph

Exchange Language (GXL) [70] graph, which is an XML graph format. This format is used by the

ClusterNav visualization program which uses GraphViz as its underlying drawing tool.

4.1 REportal Web Client

Because each tool is wrapped as a web service, a standalone non-web client can be easily created

on any platform by creating an implementation based on the WSDL and the XSD type definitions.

We chose instead to implement our client as yet another server, created using JSP documents

to represent the presentation layer. SOA client stubs invoke the services and return their results,

possibly after some filtering and logistics (including, for instance, unzipping a user’s project on the file

system). The JSP presentation layer invokes the client stub, queries the resulting XML document,

and displays the results on the web page or graphically using the ClusterNav tool. Each source

package within the REportal web client corresponds to a different service provided by REportal.

The relationship between the presentation and service layers of REportal is noted in Figure 4.1.

The REportal web-client is made up of JSP documents, whose navigation is shown in Figure 4.2.

Users begin at the index.jsp or home.jsp page (one simply points to the other). Users then have

a choice between registering or logging in, at which point they are taken to the projectManager.jsp

51

REportal Presentation
Layer includes JSP Web
Pages and handles User
Session State.

Project Manager Service
creates users and projects
with uploaded code or
bytecode.

Static Analyzer Service
creates an XML repository
from the code. This service
also provides an interface to
query the repository and
obtain a JDOM object result,
which is represented in an
MDG.

The Source Code Browser
Service creates a
cross-referenced HTML view
of the project's source code.

Currently implemented
by the BAT Static
Analyzer for Java.

Currently implemented
by Sorcerer, an
open-source code
browser tool.

Bunch Clustering Service
invokes the Bunch Clustering
tool on MDG's produced by
querying the Static Analyzer
repository.

Visualized by the
ClusterNav GXL graph
viewer tool.

Database Abstraction Layer
handles generic SQL Queries
on projects and users

Database Driver Layer stores
project data and location in the
server's file system, and
enables atomic database
transactions.

Currently implemented
with mysql.

Metrics Service displays
software metrics, including
comments, CCN complexity,
and inheritence tree size
for a software system.

Currently implemented
with an internal Metrics
Framework and JavaNCSS

Dynamic Analyzer Service
produces an aspect to be
woven into the user's code.
 The modified program
produces a call trace of the
executed features in MDG
format.

Text Search Service seeks
strings and patterns in the
source code, returning a
tabular result that includes
the matching line, the file,
and the line number.

Software Forensics Service
analyzes the files in a user's
project, comparing them to a
given "learning set" of files
whose authorship is known.
 A known author from the
learning set is predicted to
have authored each file in
the user's project.

Currently implemented with
an internally developed
software forensics
application.

<<finds methods to
instrument from>>

Figure 4.1: Generic layered structure of REportal’s underlying services

52

in
de
x.
js
p

ho
m
e.
js
p

lo
gi
n.
js
p

re
gi
st
er
.j
sp

pr
oj
ec
tM
an
ag
er
.j
sp

re
m
ov
eP
ro
je
ct
.j
sp

up
lo
ad
P
ro
je
ct
D
at
a.
js
p

ad
dP

ro
je
ct
.j
sp

an
al
ys
is
.js
p

an
al
ys
is
_a
sp
ec
t.
js
p

an
al
ys
is
_f
or
en
si
cs
.js
p

an
al
ys
is
_m

et
ri
cs
.j
sp

an
al
ys
is
_s
ou
rc
eb
ro
w
se
.j
sp

an
al
ys
is
_t
ex
ts
ea
rc
h.
js
p

re
su
lt
Li
st
.js
p

re
su
lt
Li
st
_m

dg
.j
sp

re
su
lt
Li
st
_r
ea
ch
.j
sp

re
su
lt
Li
st
_c
la
ss
es
.js
p

re
su
lt
Li
st
_m

et
ho
ds
.j
sp

fo
re
ns
ic
s.
js
p

so
ur
ce
B
ro
w
se
r.
js
p

as
pe
ct
.j
sp

di
sp
la
yA
sp
ec
t.
js
p

up
lo
ad
A
sp
ec
t.
js
p

he
ad
er
.j
sp

fo
ot
er
.j
sp

bo
dy
he
ad
er
.j
sp

bo
dy
fo
ot
er
.j
sp

ut
il
.j
sp

cl
us
te
rn
av
.j
ar

Figure 4.2: JSP navigation diagram of the REportal web client

53

page. Here, several options are possible; one can add, upload data to, remove, or upload a project.

Once the user and project logistics are complete, the user proceeds to the analysis.jsp file. This

file uses a variable called analyzeRibbonPage (managed by the analyzeRibbonPage.jsp, which is not

pictured for brevity) that represents the feature being invoked. This enables the analysis.jsp file to

highlight the correct button at the top of the screen, and import the correct jsp file into the display.

Each of the primary features are accessible from analysis.jsp. Alternatively, the user can logout, in

which case the user’s saved session state is destroyed, and the user is returned to the homepage.

Of primary interest from the analysis.jsp page is the resultList.jsp page. If static analysis is

chosen, the user is given the option to filter their results: one may execute a class entity query,

method entity query, reachability query, or an MDG relationship query. In all cases, an XML query

is executed against the BAT XML repository, and the user is taken to resultList.jsp for display.

Some queries require a tabular report display, while others require a graphical display. The files

resultList mdg.jsp, resultList reach.jsp, and so on, are responsible for carrying out this display, and

the proper file is imported into resultList.jsp after the XML query is executed. In this way, there is

even some modularity among the jsp files, in that JSP code can be imported just-in-time based on

the user’s session state.

Finally, a number of omnipresent files exist, including a header and footer (for code and HTML

header data), as well as a body header and footer (for adding text or graphics). There is also a file

called util.jsp, which is included by header.jsp, and contains a number of overhead methods that

might be required by all jsp pages – for example, user token verification. Finally, clusternav.jar is

the Cluster Viewer library used by the presentation layer. Normally, this file would be stored in the

$REPORTAL ROOT/lib directory, but this file must be accessible from the web so that it can be

downloaded to the client’s web browser on demand. Therefore, it is stored with the jsp pages for

download.

ClusterNav also requires a CGI script to be present in the REportal web/cgi-bin directory. This

file is called webdot.pl, and renders graphs for the cluster viewer to display. CusterNav produces

54

unrendered dot graphs from the clusters provided by Bunch, and uses webdot.pl to invoke the dot

application to render the graph. The rendered graph is also in the dot file format, but contains

additional rendering information, including where to draw the edges. Configuring Tomcat to use

CGI scripts is discussed in Section B.2.2.

Configuring the REportal client is discussed in Section B.2.4.

4.2 REportal Web Services

To integrate the tools on the server, the primary tool functionality is first identified; we find its

appropriate customization parameters, inputs, and output format. These inputs and outputs may

be file-based via a command line, or string-based via an API. In either case, a web service is created

that wraps this primary functionality. An XSD is created to represent the parameters, input and

output of the tool, and a WSDL exposes a high-level interface that uses the parameters, inputs and

outputs. The WSDL is implemented in any language, on any platform, and on any host, to invoke

the tool. The service architecture allows for transparent passing of parameters and results from

service host to service client, given the host’s service URL. This is a critical element of REportal’s

new architecture, because some of these tools only run on a particular platform, or on a particular

JDK, making it essential to support tools that exist on various hosts. This strategy also eliminates

the need to house these services. It is a long-term goal of REportal to support the dynamic location

and execution of a service at runtime. Currently, a simple distribution of services exists that allows

for compatibility between the application server (Apache Tomcat [27]) and the dependencies of the

underlying tool. The current REportal service distribution is illustrated in Figure 4.3. Using this

approach, REportal represents a framework for distributing services over the web that expose RE

tool functionality.

In this case, the JSP Presentation Node represents the service orchestration entity: based on

the user’s desired execution task (a call graph relationship, for instance), it chooses the services to

invoke and runs them in the proper order, passing the result from each one to the next service until

55

<<component>>
Sorcerer Source Code Browser

JSP Presentation Node

<<executionEnvironment>>
Tomcat 5.0

JDK 1.6

<<executionEnvironment>>
Tomcat 6.0

JDK 1.5

<<component>>
Project Manager Service

<<component>>
Static Analyzer Service

<<component>>
Aspect Instrumentation Service

<<component>>
Text Search Service

<<component>>
Bunch Clustering Service

<<component>>
Metrics Service

<<component>>
Author Identification Forensics Service

WSDL service invocation
passing data structures
represented by the XSD
data type descriptions.

WSDL service invocation
passing data structures
represented by the XSD
data type descriptions.

Figure 4.3: Distribution of services among application servers in REportal

the final output is obtained. Ultimately, even this process will be automated via the BPEL. With

an automatically generated BPEL, services are selected and orchestrated for a particular execution

task. Once an RE business process is established that creates a process thread for these services, it

becomes possible to execute these services in parallel. The BPEL process and its potential for SOA

is discussed in Section 7.1.

4.2.1 Methodology for Creating a Tool-Centric Service

The service-oriented architecture implemented by REportal is intended so that new tools can be

added as web services. However, it is well understood that many of these tools, especially older tools,

are implemented as standalone programs, shell scripts, or APIs, rather than as a web service. It is

therefore necessary to encapsulate the functionality of the tool as a web service before integrating

it with the portal. We have designed a methodology for doing this in a way that preserves the

56

decoupled service and data spirit of REportal while adding minimal burden to the developer. This

process was refined via the case study described in Chapter 6, and is described briefly here.

4.2.2 Identification of Core Functionality

First, the core functionality of the tool is identified. This functionality is described at the

business-logic or use case level of abstraction. It is not typically necessary to port every feature

of a tool to the portal; to do so would add unnecessary complexity to the user interface at the

presentation layer by burdening the user with numerous options. Configuration and invocation

of these subfeatures is performed automatically from within the service as part of providing the

executive-level feature to the user. These core functionalities usually represent one or a small number

of methods to be created within the web service description.

4.2.3 Data Type Design

Once the core functionality is identified, the minimal inputs and outputs are determined to invoke

the functionality from within the legacy tool. This includes the inputs and outputs that are required

to execute intermediate features or programs from within that feature. These form the basis of the

data types that will be created within the web service description, and serve as parameters or return

values from the methods also described therein.

4.2.4 Design and Implement the Web Service Wrapper

Finally, the web service is designed around the parameters defined in Sections 4.2.2 and 4.2.3.

Figure 4.4 describes the behavior performed by the web service to invoke the legacy tool. Notice

that the web service operation exposed to the client (the REportal presentation layer) is minimal,

consisting of only those nodes which lie outside of the three clusters in Figure 4.4 (the Abstract

Tool Encapsulation cluster, the Legacy Tool cluster, and the External Functionality cluster). As a

result, the client must simply invoke the single or few web service operations in order to execute

57

the main behaviors of the legacy tool. The service implementation, in turn, invokes the legacy tool,

configuring it with the settings needed to obtain the result required by the web service operation.

Like the end-user, the presentation layer is not concerned with the details of configuring the tool

or the service that invokes it. Instead, it requests a report, analysis, or other information that the

legacy tool can provide, and expects the service to handle obtaining that data in the format specified

by the web service. This is, indeed, the primary benefit of a design-by-contract approach; it helps to

minimize the complexity of the presentation layer as well as to minimize the amount of interaction

and configuration required by the end user. The user makes a request via the presentation layer,

and the result is displayed to the user via the presentation layer. The underlying service invokes

the tool and external functionality, and may have to pipe-and-filter intermediate results through

additional service invocations. In this case, the web service becomes a web service client on behalf

of the presentation layer, and this is also depicted throughout Figure 4.4.

Abstract Tool Encapsulation as a Web Service

Invoke web service operation

Fill in service parameter data type

Invoke legacy tool or API

Legacy Tool

Legacy tool core functionality

External Functionality

Legacy tool subfeature

External application

Read service return type

Display

1 . . . *

1 . . . f ew

1 . . 1

1 . . . *

Figure 4.4: The presentation layer invokes a legacy tool using only its identified core functionality,
exposed via a web service wrapper.

58

4.3 REportal Tool-Centric Services

In this section we describe some of the development details for each of REportal’s services. For

each service, we describe first the interface that defines the functionality provided by the service.

We then discuss the data types that are used to implement the service, along with any additional

appropriate implementation details. To see the full WSDL service contracts and XML schemas that

define the data types, see Appendix C.

4.3.1 Project Management Service

The Project Management service is the one “logistics” service provided by REportal. It is respon-

sible for interacting with the REportal database (see Section 4.4), authenticating users, validating

user access to projects, and mapping projects to their locations on the file system. On the file

system, each user has a subdirectory under the REportal root directory. Because these services are

distributed across multiple hosts or Tomcat instances, it is possible that the service analyzing a

user’s project is not located on the file system where the Project Manager resides. In this case, it

is necessary to either serialize an object or XML data containing the information required by the

service, or to send all or part of the user’s project to the requesting service.

As shown in the ProjectManagerPortType portion of Figure 4.5, the Project Management service

provides several functionality invoked by the presentation layer (described in Section 4.1). These

allow the presentation layer to do the following:

• Add a Project: The addProject behavior takes a project as a parameter of type ProjectInfo

and adds it to the database of projects owned by that user. It returns the same ProjectInfo

parameter that it received on invocation to verify that the project was added successfully.

Typically, the user’s next action is to invoke the uploadData behavior, described later in this

section, to provide the code and/or binaries associated with the new project.

• List Projects: This behavior takes a UserToken parameter that specifies a user and a valida-

59

tion token that indicates that the user has successfully authenticated. The Project Manager

queries the database for projects associated with the user, and returns a list of ProjectInfo

objects, which is called a ProjectList.

• Login User: This behavior takes a partially filled UserToken object that contains only the

user login name and password. Because it does not contain a valid token from the server, the

UserToken cannot be used to perform any of the other behaviors in REportal. The server

looks up the user id and encrypted password in the database and, if they match, sets the

appropriate token value in the UserToken which authenticates the user. If the user password

does not match, an invalid value that cannot match any user is placed in the token. In

either case, the token is returned to the presentation layer, where the user is notified of the

authentication status and the UserToken is persisted as part of the user’s session for use in

invoking other behaviors in the system.

• Register User: Here, user information such as name, e-mail address, company name, and

password are sent to the Project Manager for addition to the database. If the desired username

does not yet exist, it is added to the database and assigned a user token. The user’s password

is encrypted and stored as well along with the rest of the user’s provided information. If the

user is successfully added to the database, the addProject behavior is automatically invoked

to add a small demo project for investigation by the user upon login. The user is notified of

success or failure of this operation, and, on success, is able to log in.

• Remove Project: The project to be removed is specified via a ProjectInfo parameter and

the database is queried to determine its ownership. If the project is owned by the requesting

user, it is “removed.” In reality, a flag is set in the database indicating that the project is

no longer active, and it is moved to another location on the filesystem. At present, it is not

possible to “undelete” a removed project, but it would be an easy matter to undo this behavior

if the functionality were provided to the user.

60

• Upload Project Data: File data is persisted as a ProjectData object, which contains the

binary contents of a file corresponding to a user project’s source code and/or binaries. The

project manager verifies that the project is owned by the authenticated user, and then stores

the file data (stored in a ZIP file format within the ProjectInfo parameter) on the file system

in the appropriate location. That file is unzipped, and the project database entry (that was

created when the project was first added) is updated to include the location of this directory.

The data types described here are defined in Figure 4.6. In the UserToken type, information

about the user is stored, including the user’s name, encrypted password, company, e-mail address,

and an optional token called loginId. In WSDL, the optional attribute is indicated by specifying

minOccurs=0, declaring that the loginId may appear zero times. This is to enable a login attempt

by a user. In this case, loginId is not populated because the user has not yet authenticated. A

UserToken without a loginId is legal but is considered unauthenticated. By default, maxOccurs is

set to 1, but this can be overridden, for example, to unbounded in order to create an array. In this

case, when the user attempts to log in, all the information except for the token is filled in. The server

authenticates the user and, if successful, the UserToken is populated with a token value. The other

behaviors within REportal check for and validate this token value before executing any behaviors.

Next, the ProjectList type, as described in this section, contains a list of ProjectInfo objects.

This is useful for listing projects that belong to a user, or for searching for a user’s project. The

ProjectInfo type consists of a language, which is an enumeration called FileType. It enables

values such as Java, C, and C++. This type is also defined in the WSDL but is omitted here for

brevity. ProjectInfo also contains the filePath to the project’s source and/or binaries, the user

ID that owns the project, and the name of the project.

Finally, the ProjectData type holds a user’s uploaded project files for saving to the file system.

It contains a ProjectInfo type that links it to a project, and a data element that contains a binary

sequence of ZIP file data to be written to the file system and unzipped by the uploadProjectData

behavior.

61

 PROJECT MANAGER SERVICE

<<wsdl:service>>
ProjectManagerService

name=ProjectManagerService

<<port>>
ProjectManagerPortTypeBindingPort

http://localhost:8084/ProjectManagerService/ProjectManagerPortTypeBindingPort

ProjectManagerPortTypeBinding

<<wdsl:portType>>
ProjectManagerPortType

addProject(addProject : ProjectInfo) : ProjectInfo
listProjects(listProjectsUserToken : UserToken) : ProjectList
userLogin(userResponseToken : UserToken) : UserToken
userRegister(userRegisterToken : UserToken) : UserToken
removeProject(removeProject : ProjectInfo) : ProjectInfo
uploadProject(uploadProject : ProjectData) : ProjectInfo

Figure 4.5: The Project Manager service definition

62

de
fi

ni
tio

ns
ty

pe
s

co
m

pl
ex

Ty
pe

na
m

e:
Pr

oj
ec

tI
nf

o

co
m

pl
ex

Ty
pe

na
m

e:
U

se
rT

ok
en

co
m

pl
ex

Ty
pe

na
m

e:
Pr

oj
ec

tL
is

t

co
m

pl
ex

Ty
pe

na
m

e:
Pr

oj
ec

tD
at

a

se
qu

en
ce

el
em

en
t

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
na

m
e

el
em

en
t

ty
pe

:x
sd

:in
t

na
m

e:
us

er
Id

el
em

en
t

ty
pe

:F
ile

Ty
pe

na
m

e:
la

ng
ua

ge

el
em

en
t

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
fi

le
Pa

th

el
em

en
t

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
co

m
pa

ny

el
em

en
t

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
em

ai
l

el
em

en
t

ty
pe

:x
sd

:in
t

na
m

e:
lo

gi
nI

d

m
in

O
cc

ur
s:

0

el
em

en
t

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
pa

ss
w

or
d

el
em

en
t

na
m

e:
pr

oj
ec

t

el
em

en
t

na
m

e:
da

ta
si

m
pl

eT
yp

e
re

st
ri

ct
io

n

ba
se

:x
sd

:b
as

e6
4b

in
ar

y

Figure 4.6: The Project Manager data types and structure

63

4.3.2 Static Analysis

Static analysis features are currently offered for the Java language, and are provided by the

BAT static analyzer [37]. BAT parses the Java bytecode and produces a representation of the

code structure and behavior as an XML document in a schema defined by BAT. Using BAT, we

created a query engine that performs common software analysis queries on the document, either

using XSLT transformations or equivalent XQuery operations [54] (discussed in Section 4.5.1). The

result of these queries is represented in a JDOM [12] document, using an XML representation that is

currently internal to REportal but will ultimately be developed into a comprehensive XML Schema.

BAT currently has a dependency on JDK 5, and for this reason it is run on a separate application

server that runs on top of JDK 5.

Because static analysis is one of the most common operations invoked in REportal, the BAT

Analyzer contains only one operation. Given a Java class or ZIP file (uploaded from the Project

Manager), the BAT Analyzer service analyzes the entire project and produces a unified XML repos-

itory containing all of the project’s artifacts. This is returned as a string, and saved as part of the

user’s session by the presentation layer. This effectively caches the user’s project information for

faster querying. The operation is specified in Figure 4.7.

The data types require to implement this service behavior, as shown in Figure 4.8, are a FileType,

which is the same FileType enumeration used by the Project Manager service and specifies whether

the file data is a ZIP, JAR, or Java CLASS file; and a filePath, which is the path to the file to be

unzipped and/or analyzed.

4.3.3 Bunch Clustering

Querying the resulting XML document from the BAT Analyzer service, a Module Dependency

Graph (MDG) is obtained that the Bunch clustering system [52] converts into a clustered graph

in GXL [70, 40] format. This clustered graph provides a hierarchical representation of clusters-of-

clusters within a graph, that one can navigate with an appropriate viewer (see Section 3.5). For

64

BAT STATIC ANALYZER SERVICE

<<wsdl:service>>
BATAnalyzerServiceService

name=BATAnalyzerServiceService

<<port>>
BATAnalyzerServicePort

http://localhost:8080/BATAnalyzerServiceService/BATAnalyzerServicePort

BATAnalyzerServiceBinding

<<wdsl:portType>>
BATAnalyzerServicePortType

BATAnalyzerServiceOperation(filePath : string; fileType : FileType) : string

Figure 4.7: The BAT Static Analyzer service definition

65

de
fi

ni
tio

ns

ty
pe

s

m
es

sa
ge

na
m

e:
B

A
TA

na
ly

ze
rS

er
vi

ce
O

pe
ra

tio
nR

eq
ue

st

m
es

sa
ge

na
m

e:
B

A
TA

na
ly

ze
rS

er
vi

ce
O

pe
ra

tio
nR

ep
ly

si
m

pl
eT

yp
e

na
m

e:
Fi

le
Ty

pe

re
st

ri
ct

io
n

ba
se

:x
sd

:s
tr

in
g

en
um

er
at

io
n

va
lu

e:
JA

R

en
um

er
at

io
n

va
lu

e:
C

L
A

SS

en
um

er
at

io
n

va
lu

e:
Z

IP

pa
rt

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
fi

le
Pa

th

pa
rt

ty
pe

:tn
s:

Fi
le

Ty
pe

na
m

e:
fi

le
Ty

pe

Figure 4.8: The BAT Static Analyzer data types and structure

66

static analysis graphs, this clustered abstraction provides a view of the subject program’s subsystem

structure, derived from the relationships found between its entities.

Because this service provides a back-end feature to convert XML query results into a graphical

display format, the user never directly invokes this feature. Instead, this feature is invoked by

another service or by a feature invoked by the presentation layer. The operation is transparent to

the user: if the user requests a relationship query, it is performed on the static analysis repository,

and automatically passed to the Bunch Clustering service to obtain a clustered graph for display. The

resulting graph is passed to the ClusterNav graph viewer, developed by the author, for interactive

display.

The service, shown in Figure 4.9, provides one operation. This operation takes an MDG as a

string, and returns a string representing the clustered graph in GXL format. As a result, all the

data types used by this service are of type string, which can be seen in Figure 4.10.

 BUNCH CLUSTERING SERVICE

<<wsdl:service>>
bunchwrapperService

name=bunchwrapperService

<<port>>
bunchwrapperPort

http://localhost:8084/bunchwrapperService/bunchwrapperPort

bunchwrapperBinding

<<wdsl:portType>>
bunchwrapperPortType

bunchwrapperOperation(mdgInput : string) : string

Figure 4.9: The Bunch Clustering service definition

67

4.3.4 Metrics

The Metrics service is provided by a metrics framework that currently runs JavaNCSS [8] and

other metrics computation programs on Java code. Metrics include fan-in and fan-out for classes,

inheritance hierarchy size, method Cyclomatic Complexity, and others.

The Metrics service is quite similar in structure and behavior to the BAT Static Analyzer service

described in Section 4.3.2. Like the Static Analyzer service, the Metrics service accepts the file path

and file type to the user’s project, and runs the metrics computation programs. The results are

aggregated and represented as an XML document, which is returned as a string. This is shown in

Figures 4.11 and 4.12. The presentation layer parses the XML metrics report for tabular display to

the user.

4.3.5 Source Code Browser

Source code browsing features for the Java language are provided by Sorcerer [19]. This service

supports Java code only, and requires JDK 6. For this reason, it is run on its own application server

which runs on top of JDK 6. The source code browser is different from the other tools in that,

instead of returning an XML document to be queried, it returns a ZIP file set of HTML pages that

are either displayed on a web browser or downloaded for display. To accommodate this, REportal

displays the web pages in its presentation layer dynamically via Ajax (see Figure 3.12). Sorcerer’s

results are displayed in an iFrame in REportal via Ajax. Drop-in replacement services that support

other languages can return a set of web pages, or unzip the web pages to a known location, and they

can be similarly displayed at the presentation layer. Because the user’s project language is stored

in the REportal database, the appropriate service for that language can be chosen at runtime.

The sole service operation (shown in Figure 4.13) accepts the file path to the user’s project and

runs the source code browser program on the project files, obtaining a series of web pages. Because

these web pages are meant to be viewed standalone, and not within another web site like REportal,

a number of modifications must be made to the generated web pages and the included JavaScripts,

68

de
fi

ni
tio

ns

ty
pe

s

m
es

sa
ge

na
m

e:
bu

nc
hw

ra
pp

er
O

pe
ra

tio
nR

eq
ue

st

m
es

sa
ge

na
m

e:
bu

nc
hw

ra
pp

er
O

pe
ra

tio
nR

ep
ly

po
rt

Ty
pe

na
m

e:
bu

nc
hw

ra
pp

er
Po

rt
Ty

pe

pa
rt

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
m

dg
In

pu
t

op
er

at
io

n

na
m

e:
bu

nc
hw

ra
pp

er
O

pe
ra

tio
n

in
pu

t

m
es

sa
ge

:tn
s:

bu
nc

hw
ra

pp
er

O
pe

ra
tio

nR
eq

ue
st

na
m

e:
in

pu
t1

ou
tp

ut

m
es

sa
ge

:tn
s:

bu
nc

hw
ra

pp
er

O
pe

ra
tio

nR
ep

ly

na
m

e:
ou

tp
ut

1

Figure 4.10: The Bunch Clustering service data types and structure

69

 METRICS SERVICE

<<wsdl:service>>
MetricServiceService

name=MetricServiceService

<<port>>
MetricServicePort

http://localhost:8084/MetricServiceService/MetricServicePort

MetricServiceBinding

<<wdsl:portType>>
MetricServicePortType

MetricServiceOperation(filePath : string; fileType : FileType) : string

Figure 4.11: The Metrics service definition

in order to make them compatible with the iFrame web object in which they will be displayed.

These modifications take place on the server side, and the resulting web pages are stored in ZIP

format. This file is returned by the service as a binary sequence of data, as shown in Figure 4.14.

The presentation layer downloads this ZIP file, unzips it, and displays it to the user.

4.3.6 Text Search

The Text Search service performs grep operations on the source code repository. It contains

one service operation (depicted in Figure 4.15) that takes in and returns a single parameter. These

parameters contain all of the usage options and return values, which are created, parsed and displayed

by the presentation layer.

The parameters: TextServiceRequestType and TextServiceResponseType, are shown in Fig-

ure 4.16. Each type contains a header, which is also shown, that contains the associated user’s

project information. TextSearchRequestType contains a grep search string, a case-insensitive search

flag, and the standard header. After performing the search, the results are parsed and stored as

70

de
fi

ni
tio

ns

ty
pe

s

m
es

sa
ge

na
m

e:
M

et
ri

cS
er

vi
ce

O
pe

ra
tio

nR
eq

ue
st

m
es

sa
ge

na
m

e:
M

et
ri

cS
er

vi
ce

O
pe

ra
tio

nR
ep

ly

si
m

pl
eT

yp
e

na
m

e:
Fi

le
Ty

pe

re
st

ri
ct

io
n

ba
se

:x
sd

:s
tr

in
g

en
um

er
at

io
n

va
lu

e:
JA

R

en
um

er
at

io
n

va
lu

e:
C

L
A

SS

en
um

er
at

io
n

va
lu

e:
Z

IP

pa
rt

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
fi

le
Pa

th

pa
rt

ty
pe

:tn
s:

Fi
le

Ty
pe

na
m

e:
fi

le
Ty

pe

Figure 4.12: The Metric Service data types and structure

71

 SOURCE BROWSER SERVICE

<<wsdl:service>>
SourceBrowserServiceService

name=SourceBrowserServiceService

<<port>>
SourceBrowserServicePort

http://localhost:8084/SourceBrowserServiceService/SourceBrowserServicePort

SourceBrowserServiceBinding

<<wdsl:portType>>
SourceBrowserServicePortType

SourceBrowserServiceOperation(path : string) : base64Binary

Figure 4.13: The Sorcerer Source Code Browser service definition

a TextSearchResponseType, which also contains a header, a status flag called info, and a list of

search results in the contents element. A similar list of file names is stored in the files, and the

matching line numbers is stored in lines. These lists are printed in tabular form by the presentation

layer.

4.3.7 Dynamic Analysis via Aspect Instrumentation

Aspect Instrumentation modifies the program’s source code such that a logger traces the method

invocations of a software system, yielding the dynamic call graph for a particular feature. This is

accomplished by creating an aspect using AspectJ [46] for Java code, which runs behind a service

and uses the static analysis results of the system to obtain a list of methods that the aspect should

instrument.

For security reasons, the user downloads the aspect, instruments the code on the user’s local

computer, and uploads the result which is generated by the aspect. That result is further analyzed

to produce an XML graph that is visualized as described in Section 3.5. This process is detailed in

Figure 4.17.

72

de
fi

ni
tio

ns

m
es

sa
ge

na
m

e:
So

ur
ce

B
ro

w
se

rS
er

vi
ce

O
pe

ra
tio

nR
eq

ue
st

m
es

sa
ge

na
m

e:
So

ur
ce

B
ro

w
se

rS
er

vi
ce

O
pe

ra
tio

nR
ep

ly

pa
rt

ty
pe

:x
sd

:s
tr

in
g

na
m

e:
pa

th

pa
rt

ty
pe

:x
sd

:b
as

e6
4b

in
ar

y

na
m

e:
pa

th

Figure 4.14: The Sorcerer Source Code Browser service types and structure

73

 TEXT SEARCH SERVICE

<<wsdl:service>>
TextSearchServiceService

name=TextSearchServiceService

<<port>>
TextSearchServicePortTypeBindingPort

http://localhost:8084/TextSearchService/TextSearchServiceService

TextSearchServicePortTypeBinding

<<wdsl:portType>>
TextSearchServicePortType

RunTextSearch(params : TextServiceRequestType) : TextServiceResponseType

Figure 4.15: The Text Search service definition

The service exposes two operations, shown in Figure 4.18. The first, MakeAspect, is invoked from

the presentation layer. The BAT Static Analyzer service, described in Section 4.3.2, is automatically

invoked to obtain a list of methods in the user’s project. This list is displayed to the user as a list

of check boxes, from which the user may select which methods should be traced by the aspect. If

the user knows a priori which methods are used by the particular feature(s) to be traced, then the

size of the result can be reduced by only selecting those methods. It is also acceptable to create an

aspect to trace all methods, because only those methods invoked during the feature(s) trace will be

included in the final result. This list of selected methods is passed to MakeAspect as its MakeRequest

parameter, and the aspect is created. The generated aspect weaves into the selected methods, and

writes the name of the called function to a file every time it is invoked, along with the name of the

function that invoked it. Thus a trace file is generated in MDG format.

The MDG file is written to a file called output.txt, which is uploaded via the presentation layer

back to the Dynamic Analysis service. This is done through the AIGraphXML operation. The MDG

is passed via the GraphRequest parameter, clustered via an automatic invocation of the Bunch

Clustering service, and the resulting GXL graph is returned to the presentation layer for display in

74

definitions types

complexType

name:StandardRequestHeader

complexType

name:TextServiceRequestType

complexType

name:TextServiceResponseType

sequence

element

type:tns1:StandardResponseHeader

name:header

element

type:xsd:string

name:info

element

maxOccurs:unbounded

type:xsd:string

name:contents

element

type:xsd:string

name:files

element

type:xsd:int

name:lines

sequence

element

type:xsd:string

name:filePath

element

type:ns:FileType

name:fileType

sequence

element

type:xsd:boolean

name:caseinsensitive

element

type:xsd:string

name:searchstring

element

type:ns:FileType

name:projectname

element

type:xsd:string

name:username

Figure 4.16: The Text Search Service data types and structure

75

Create Aspect Download Aspect

Weave Aspect into Code on Local Computer

Execute One or More Features on Local Computer

Upload Trace File Generated By Aspect to REportal

Cluster Call Trace through Bunch Service and Display in ClusterNav

Figure 4.17: Activity diagram detailing the creation and execution of a dynamic analysis aspect,
and its subsequent viewing on REportal

ClusterNav via the GraphResponse parameter.

These parameters are described in Figure 4.19. The MakeRequest contains only a MakeHeader

object, which contains information about the project, the name of the aspect, and the join points

(which is the list of methods to be traced). The MakeResponse contains a header and the aspect

code, stored in a string to be saved to the local computer. The GraphRequest contains the project

name and the MDG file generated by executing the aspect-woven program. The corresponding

GraphResponse contains one element: a string containing the GXL graph of the clustered MDG,

to be displayed by the presentation layer.

4.3.8 Software Forensics to Determine Code Authorship

We have developed a series of tools to determine source code authorship [49, 47]. It is often

helpful for intellectual property disputes, plagiarism detection, or general program comprehension

to identify the specific authors of various portions of source code. Kothari, et al [47] and Lange,

76

DYNAMIC ANALYSIS SERVICE VIA ASPECT INSTRUMENTATION

<<wsdl:service>>
AspectInstrumentationService

name=AspectInstrumentationService

<<port>>
AspectInstrumentationPortTypeBindingPort

http://localhost:8084/AspectInstrumentation/AspectInstrumentationService

AspectInstrumentationPortTypeBinding

<<wdsl:portType>>
AspectInstrumentationPortType

MakeAspect(params : MakeRequest) : MakeResponse
AIGraphXML(params : GraphRequest) : GraphResponse

Figure 4.18: The Dynamic Analysis via Aspects service definition

et al [49] have developed a technique through which a set of metrics are used to identify authors

of source code. First, a training set (also called a learning set) is analyzed. This training set is

a suite of source code whose authors are known. This information is stored about each file, and a

series of metrics are computed on each file as well. From this known set of authors, the testing set

is analyzed against the same set or a subset of metrics to determine which of the known authors

most closely matches each testing set file. This tool is the focus of the case study in Chapter 6.

For REportal, a user’s project may be considered the testing set. That is, the user may wish to

determine which author wrote various portions of the uploaded project. To accomplish this, it is

necessary to provide the Forensics service with a learning set of known authors. The training set is a

ZIP file containing directories. Each directory is named for the author that wrote the files contained

within. The service analyzes both sets and then returns a report in tabular form to be displayed

at the presentation layer. An interesting extension to this service might be to use the entire source

code repository of code that has been uploaded to REportal. If the authorship of each file there is

known in advance, then it can be used as a training set against which new projects can be analyzed.

77

definitions types

complexType

name:MakeHeader

complexType

name:MakeRequest

complexType

name:MakeResponse

complexType

name:GraphRequest

complexType

name:GraphResponse

sequence

element

type:xsd:string

name:AspectName

element

maxOccurs:unbounded

type:xsd:string

name:Joinpoints

element

maxOccurs:unbounded

type:xsd:string

name:Options

element

maxOccurs:unbounded

type:xsd:string

name:UserMade

element

type:xsd:string

name:Directory

sequence

sequence

sequence

element

type:xsd:string

name:aspect

element

type:StatusCodeType

name:header

element

type:xsd:string

name:projectName

element

type:xsd:string

name:xml

element

type:xsd:string

name:output

Figure 4.19: The Dynamic Analysis via Aspects service data types and structure

78

The Forensics service definition (Figure 4.20) provides a single operation. Given a learning set

and a training set, both in ZIP format, the service runs and returns a PredictionTupleList,

which is a list of file names in the testing set along with the name of the predicted author, and the

confidence with which that author was selected over any other in the training set.

The Forensics data types definition (Figure 4.21) specifies several structures used by the ser-

vice. As previously discussed, the primary parameters to the service are the learning and testing

sets, which are each a binary sequence of data representing a ZIP file. The service reply message

type is a PredictionTupleList, which is a sequence of one or more PredictionTuples. Each

PredictionTuple consists of the filename, the predicted author, and the confidence with which that

author was predicted.

FORENSICS SERVICE FOR AUTHOR IDENTIFICATION

<<wsdl:service>>
ForensicsServiceService

name=ForensicsServiceService

<<port>>
ForensicsServicePort

http://localhost:8084/ForensicsServiceService/ForensicsServicePort

ForensicsServiceBinding

<<wdsl:portType>>
ForensicsServicePortType

identifyAuthor(learningFiles : base64Binary; testingFiles : base64Binary) : PredictionTupleList

Figure 4.20: The Author Identification via Software Forensics service definition

79

4.4 Database for User and Project Management

Project and user logistics management is provided by a language-independent service that main-

tains a database and maintains the repository on the local file system. Users are cross-linked with

their projects, in which is stored the project’s location on the file system, and the language asso-

ciated with the project. This database is queried both to locate the user’s project, and also as a

security check to ensure that the project is owned by the user associated by the login token obtained

when the user first authenticated. The database management layer does not depend on a particular

platform or database engine, but the underlying database is provided by mysql [14].

The structure of the REportal database is shown in Figure 4.22. It contains four tables, which

are:

• KeyTable: The KeyTable holds only one element. The KeyString is a BLOB that contains a

binary encryption key to be used when encrypting and decrypting user passwords. The user

password is only in decrypted form when the user first registers for a REportal account. From

then on, the password is encrypted when it is entered for login, and when it is compared to

the encrypted password stored in the database.

• Logins: The Logins table holds the user account information that was provided by the

Project Manager service when a user reigsters for an account. These fields are described in

Section 4.3.1.

• ProjectTypes: This table stores the enumerated list of project language choices, such as

Java, C, C++, etc. It exists to map the language choices to integers, which are more suitable

for use in enumerated types.

• Projects: The Projects table is the most significant of the REportal tables, and maps user

accounts to projects, and project languages to projects, as seen in Figure 4.22. All the infor-

mation from a ProjectInfo type in the Project Manager service (described in Section 4.3.1)

80

de
fi

ni
tio

ns

ty
pe

s

m
es

sa
ge

na
m

e:
id

en
tif

yA
ut

ho
rR

eq
ue

st

m
es

sa
ge

na
m

e:
id

en
tif

yA
ut

ho
rR

ep
ly

op
er

at
io

n

na
m

e:
id

en
tif

yA
ut

ho
r

co
m

pl
ex

Ty
pe

na
m

e:
Pr

ed
ic

tio
nT

up
le

co
m

pl
ex

Ty
pe

na
m

e:
Pr

ed
ic

tio
nT

up
le

L
is

t

se
qu

en
ce

el
em

en
t

na
m

e:
pa

th
N

am
e

el
em

en
t

na
m

e:
pr

ed
ic

te
dA

ut
ho

r

el
em

en
t

ty
pe

:x
sd

:d
ou

bl
e

na
m

e:
co

nf
id

en
ce

si
m

pl
eT

yp
e

re
st

ri
ct

io
n

ba
se

:x
sd

:s
tr

in
g

pa
rt

ty
pe

:x
sd

:b
as

e6
4B

in
ar

y

na
m

e:
le

ar
ni

ng
Fi

le
s

pa
rt

ty
pe

:x
sd

:b
as

e6
4B

in
ar

y

na
m

e:
te

st
in

gF
ile

s

pa
rt

ty
pe

:P
re

di
ct

io
nT

up
le

L
is

t

na
m

e:
pr

ed
ic

te
dA

ut
ho

rs

in
pu

t

m
es

sa
ge

:tn
s:

id
en

tif
yA

ut
ho

rR
eq

ue
st

na
m

e:
in

pu
t1

ou
tp

ut

m
es

sa
ge

:tn
s:

id
en

tif
yA

ut
ho

rR
ep

ly

na
m

e:
ou

tp
ut

1

Figure 4.21: The Author Identification via Software Forensics service data types and structure

81

Figure 4.22: REportal database structure

82

is stored here.

4.5 XML Repository for Storing REportal Project Data

The XML repository for the REportal project data is based on the BAT Static Analyzer program

discussed in Section 4.3.2. It is described in detail by the BAT authors [37], but we provide an

overview here to add clarity to the query mechanisms offered by REportal. The schema describes

the Java language elements, and the control flow of the code. Relationships between class entities

such as method containment, variable containment, inheritance, control flow, call graphs, etc. are

contained within the XML Schema.

As such, REportal provides a number of mechanisms to query this XML repository to return

customized reports about the user’s project. These reports can be displayed either in tabular form

or graphically. This is discussed in Section 4.5.1.

For example, consider a basic Hello World program in Java, that prints “Hello, World!” to

System.out, and exits. This provides the following BAT XML repository.

Table 4.1: Example BAT XML document for a Java Hello World program [37]

1: <class name="HelloWorld" sourcefile="HelloWorld.java" visibility="public" >

2: <inherits><class name="java.lang.Object" /></inherits>

3: <method name="main" visibility="public" static="true" >

4: <signature><parameter type="java.lang.String[]" /></signature>

5: <code>

6: <get declaringClassName="java.lang.System" fieldName="out"

7: staticField ="true" type="java.io.PrintStream"/>

8: <stringconst><value>HelloWorld</value></stringconst>

9: <invoke declaringClassName="java.io.PrintStream"

10: methodName="println" >

11: <signature><parameter type="java.lang.String" /></signature>

12: </invoke>

13: <return />

14: </code>

15: </method>

16: </class>

83

In this example, one can see that the HelloWorld class inherits only from java.lang.Object

(line 2). In line 3, main() is defined as a public static method, taking a String[] array as its

parameter (line 4). The code reads nearly identically to a heavily annotated Java program, beginning

with line 5. The document contains so much structure that the queries written against it are highly

readable.

One might expect that XML repositories can become quite verbose and, as such, take a long

time to create. To mitigate this, REportal caches the XML repositories created by the BAT Static

Analyzer and by the Metrics service subsystems, so that they are only created once.

4.5.1 Querying the XML Repositories

The Saxon [15] open-source XSLT engine is used to query the XML repositories obtained by the

the tools provided by these REportal services. It was chosen because of its easy integration with

JDOM, which was primarily used for integration with the tools. At present, the majority of the

XML representations are simple wrappers around MDG graphs, but some XML representations,

such as the BAT class file representation, are more complex and enable custom queries to return

information such including reachability queries from a particular class.

As discussed in Section 4.5, the code repository XML Schema reads much like a Java program.

Its queries reference standard Java constructs like class, method, etc. Consider the example in

Table 4.2, which queries the XML repository and returns an MDG as a result. One will notice that

the result is not in an MDG native format that can be passed directly into Bunch; rather, it is an

MDG wrapped in a single <MDG> element. This is done because XQuery requires that a result be

an XML document. The presentation layer strips this extra element away and is left with the data

required to produce an MDG file. For this example, a line of the MDG graph would consist of the

source data element, followed by a space, followed by the target data element. All of the queries

proceed in the same way.

To find the relationships that exist among classes, the outer loop (line 3) iterates on all the

84

Table 4.2: MDG XML Query on a BAT Java class repository

1: <MDG>

2: {

3: for $c in //bat:class[@name]

4: for $x in $c//* where $x/@declaringClassName != $c/@name

5: return <relation type=\"{node-name($x)}\">

6: <source>{data($c/@name)}</source>

7: <target>{data($x/@declaringClassName)}</target>

8: </relation>

9: }

10: </MDG>

classes defined in the project. It looks for all class elements in the XML document, which is an

aggregate of all the classes analyzed. The inner loop searches for all XML element definitions inside

of the current class ($c). Classes of the same name are not analyzed, as relationships between a class

and itself are implicitly assumed. The rest of the classes are either method invocations, variable

references, etc. As an example, see Table 4.1 lines 6 and 9. These correspond to a get variable

reference and a method invoke command, respectively. The name of the element (get and invoke)

defines the type of relationship that exists between the two classes. Thus, line 5 of Table 4.2 tags

the relation to be the type given by the name of the node that has been found in the inner loop.

The outer-loop class name is the source class, and the inner-loop class name is the target of the

invocation or variable reference.

As a more complex relationship query example, consider the Reachability Query sample shown

in Table 4.3. Although it is dense, this query accomplishes a reachability query in relatively few

lines of code because the XQuery language allows for a recursive construction such as this. The

class is stored as the $x variable (which may be null on a recursive call if leaf nodes or library

calls are found), the root of the document is stored as the $r variable, and a list of currently

inspected classes is stored in the $foundSoFar variable, to ensure that an infinite recursive cycle is

not obtained [44]. This check is made in the first lines of the local:reachability function. The

function then queries for any classes containing methods that invoke a method in the subject class

85

$x, and recursively queries for classes that invoke methods in the invoking methods’ classes. At

present, the return type is an arbitrary XML document that wraps the essential information in a

format that is easily parsed; this is done because there is no relationship information needed for an

MDG-style representation. In other words, the return type is really a flat file indicating source and

destination entities. Still, we discuss plans for a common XML Schema for capturing software entities

and relationships in Section 7.2. The recursive call is handled by the union of an invoke element

with a new call to local:reachability near the end of the local:reachability function, to query

the class we just found; this results in a transitive reachability query. Finally, the XML Query call

to local:reachability is made with an initial parameter (initialClassName) specifying the base

class for reachability. A similar query exists for reverse-reachability, in which the source and

target elements of the query are interchanged.

It is also possible to use XSLT transforms to query a data repository such as the XML Java class

representation provided by BAT. Using XSLT, one can use regular expressions to query data, as

well as more verbose loop constructs that are typically easier to read and modify. So far, we have

created XSLT transforms for the BAT repository to support entity and relationship queries among

classes, methods and variables.

86

Table 4.3: Reachability XML Query on a BAT Java class repository

declare function local:reachability($x as element()?, $r as document-node(),

$foundSoFar as element()*) as element()* {

if((count($x) > 0) and not ($x intersect $foundSoFar)) then

<classReach name="{data($x/@name)}">

{

for $y in $x//bat:method

for $z in $y//bat:invoke[@declaringClassName != $x/@name]

return <invoke sourceMethod="{data($y/@name)}" targetClass=

"{data($z/@declaringClassName)}" targetMethod=

"{data($z/@methodName)}" /> |

local:reachability

(($r//bat:class[@name =

$z/@declaringClassName])[1],

$r, $foundSoFar|$x)

}

</classReach>

else ()

};

<reachability>

{

local:reachability(//bat:class[@name =

’" + initialClassName + "’], root(), ())

}

</reachability>

87

5. Testing and Validation

Service-oriented architectures provide several unique opportunities for software testing. Although

it is not possible to guarantee behavior or performance regardless of testing quality, using traditional

testing best-practices, we have found, fixed, and validated each feature of REportal. We have

employed three testing techniques, and discuss this experience in Section 5.1.

We have also conducted a user validation study, consiting of typical users of REportal: soft-

ware developers. Students in a Drexel University graduate course in Dependable Software Systems

(CS576) became familiar with REportal, experimented with it, and executed their own tests on the

portal. They documented bugs, errors, inconsistencies, areas of confusion, and so forth. These were

taken into account while improving the portal and before executing our own internal tests. We

describe this study in more detail in Section 5.2.

5.1 REportal Testing

This section discusses the various testing techniques performed on REportal. Because REportal

is a large software integration project, consisting of numerous external tools, it is difficult to ensure

bug-free integration and invocation of the tools as well as the correct operation of the tools. We can

only expect the portal to be as robust and error-free as the tools on which it is built; however, in light

of the many technical challenges in integration and deployment discussed throughout this document,

it is not difficult to introduce additional bugs into the system. Although a detailed specification of

REportal and its services via WSDL contracts does help to enforce that the service operation has

been planned in advance, it is also possible that this specification is the source of more bugs. For

example, during testing, we discovered that some of our services accepted too many inputs from the

REportal presentation layer, and simply discarded those it did not need. It is debatable whether

or not this is a bug in traditional terms, as it is unlikely to cause incorrect operation, but it is

88

an example of the software’s architecture not matching its implementation. This, at best, makes

the program more difficult to understand; at worst, it can cause a user to expect certain behaviors

to occur when they do not. For instance, one of our services accepts a username along with the

rest of its input, though it is not used. If this username is omitted or incorrect, the service will still

behave normally. This would not be the expected behavior for one who is observing or exercising the

software system. It is the goal of testing to create cases that exercise the system in ways that may

not have been intended or even provided by the presentation layer, to expose bugs or other issues

just like these. In this section, we detail our testing experience, including tests that originally failed

when they were executed. Many of these were not “bugs” at all; in fact, nearly none of them were.

Instead, they were issues of incorrect specification of the service (as described here), unnecessary

parameters, etc. To us, they were opportunities to improve and refactor the service specifications

and behavior of the portal.

The REportal testing strategy involved the following techniques: service testing (described in

Section 5.1.1), which exercises the backend REportal services internally, at a SOAP-XML level; unit

testing (discussed in Section 5.1.2), which tests the system at a feature level; and user interface

testing (described in Section 5.1.3), which exercises the REportal presentation layer web pages.

5.1.1 Service Testing

Service testing is unique in that it tests services outside the context of the service client. Testing

from the service client is more like what is accomplished with unit testing (described in Section 5.1.2).

Service testing passes SOAP XML messages that conform to the contract specifications of the service

WSDL. In this way, we do not benefit from the “protection” of the client, which may perform data

validation, etc., for us.

This technique is particularly helpful for obtaining better code coverage, as we can send at least

one SOAP XML service invocation message per WSDL operation, thus ensuring that each service

operation is exercised at least once. Unit testing already helps us to verify that each feature operates

89

correctly under various conditions; therefore, we take advantage of service testing to exercise the

service in the presence of “bad data.” A typical REportal service test contains at least three

invocation messages per operation, as follows:

• Correct Message: This message contains “normal” data that is expected to pass in REportal.

If this test fails, then we know that there is a REportal configuration error or major bug that

must be addressed before testing may continue. If configuration options are accepted by

the service, then there may exist more than one correct message, in which each correct

message exercises a different normal invocation of the service.

• Invalid Data: A copy of the correct message is made for each piece of input data in the

message, and one input element is replaced with bad or invalid data (an incorrect path name,

corrupt file data, a bad user ID, etc.). It is expected that the REportal service will return

a message containing an empty result set or the appropriate status message. Typical failure

conditions for these tests include the presence of a SOAP Fault message or an exception

thrown by the service.

• Empty and/or Null Data: Finally, a copy of the correct message is made for each data

input, and one data input per message is set to an empty string and/or removed completely

from the service input message. These tests are meant to verify that the service is checking for

empty or null inputs before execution. REportal is again expected to return an empty result

set or an appropriate status message, and a failure condition would include a SOAP Fault

response or an exception.

The SoapUI [18] tool was used to perform service testing. Given a WSDL URL, SoapUI generates

a sample SOAP XML request message, in which one may fill in the parameter data to be passed to

the service. SoapUI then sends that message to the service and displays the response. From this, a

test case is generated with assertions to ensure that the response is a valid SOAP document, is not a

SOAP Fault message, and contains or does not contain certain data. This is shown in Figure 5.1,

90

in which the request (shown on the left) attempts to login a user given the incorrect password, and

the response (shown on the right) correctly shows an assigned loginId of -1, the failed login code.

Figure 5.1: SoapUI service testing tool

SoapUI enabled the rapid creation of test cases for all of the REportal services. However, it

was, at times, difficult to create test cases from the XML schema alone. For example, the Forensics

Service requires base-64 encoded ZIP file data to be included as part of the message. This would

be difficult to generate manually. It would be helpful in these cases to run tcpdump, monitor the

service host port, and execute the service using the REportal user interface. This would generate

a sample message which would serve as a better template. Because REportal uses SSL encryption

91

(see Appendix B for deployment and configuration details), this is not feasible. However, REportal

is configured to use two ports per Tomcat instance: the default one using SSL encryption (ports

8084 and 8080 for the two Tomcat instances), and another one without encryption (ports 8443 and

9443, respectively). The Axis tcpmon tool, shown in Figure 5.2, can monitor a port by setting up a

transparent pass-through port. In this case, port 58443 is set to forward to and monitor port 8443,

and port 59443 is set to forward to and monitor port 9443. Then, one can reconfigure REportal to use

these ports quickly by editing the reportal.ini file and changing the service URLs to be http instead

of https, replacing 8084 with 58443 and 8080 with 59443. This causes clear-text SOAP messages

to be sent to tcpmon, which logs the messages and forwards them to the appropriate service port

to continue normal execution. The captured messages were copied into SoapUI for use as message

templates.

Running these tests revealed a number of interesting but minor bugs evident in the services.

Some of these issues are because the service contract asks for more input than is needed. For

example, initial testing revealed that some services asked for a username, password, and project

name, when none of these inputs are used. They were not used because this functionality was

moved to the presentation layer so that one could manually invoke the services with non-REportal

data, if desired. Nevertheless, when passing bad data in these fields, one would expect the service to

fail due to an incorrect login, but it will not because the login credentials are not checked here. For

service operations which require user validation, only a valid loginId (this is the unique user token

obtained from the REportal project manager when the user first authenticates) is needed. This does

represent a security vulnerability: if one could obtain another user’s loginId token, it would be as

valuable as obtaining the user’s password in terms of gaining access to services that operate on the

user’s project. Minor checks of the REportal Project Manager and database would verify that the

information provided to the service is correct. Specific results from our first execution of these tests

included the following:

• Project Manager: 21 out of 29 tests passed. Particularly, adding a project under a user

92

Figure 5.2: The Axis tcpmon SOAP port monitoring tool

93

account when an existing project of the same name already exists should fail, and it does not.

A second project of the same name is created. This is problematic because both projects would

try to use the same directory in the file system to store files. Additional failures were the result

of the service working even when incorrect loginId or password credentials were supplied. For

example, an incorrect loginId would cause the service to attempt to create a service in another

user’s file space. The remaining issues were minor; for example, the Upload feature would

return an incorrect loginId as part of its return value, because this value is ignored. The best

way to correct issues like this is to return to the service contracts and remove extra unneeded

inputs and outputs.

• BAT Static Analyzer: 2 out of 3 tests passed. One bug was found in that, if the FileType

input is left null, the service throws a NullPointerException. Simple fault checking will

correct this type of issue.

• Aspect-Instrumentation Dynamic Analyzer: 3 out of 4 tests passed. The one failure was

a result of the service not using the FilePath input parameter. This is because the creation

of an aspect depends not on the project files, but on the list of methods chosen by the user.

This parameter should not be part of the service contract, as it is ignored. If the FilePath

field represents invalid data, the service continues to work, and this is considered a failure by

our testing standards.

• Forensics Author Identification: All 4 tests passed.

• Metrics Report: 2 out of 3 tests passed. Like the BAT Static Analyzer, passing an incorrect

or null FileType parameter results in a NullPointerException thrown by the service, and a

SOAP Fault message returned to the presentation layer.

• Source Code Browser: 1 out of 2 tests passed. Providing this service with an incorrect path

to the user’s project files results in a NullPointerException or an exception when attempting

94

to unzip the code. This results in a SOAP Fault message returned to the presentation layer.

• Text Search: 7 out of 12 tests passed. The only failures were, as previously discussed, a

result of providing invalid data to the service that is ignored. We assume that invalid data

should result in incorrect results, but the service continues to run normally. Again, although

this is not a failure from a functionality perspecive, it does alert us to the need to refactor

the service contract to remove these unneeded parameters. At best, they detract from service

comprehension.

5.1.2 Unit Testing

Unit testing was performed using JUnit [13]. We tested every operation of every service with

several representative and boundary-case inputs using service testing, described in Section 5.1.1.

This does not fully exercise each service since each operation may require several possible inputs to

exercise every possible execution path through each operation. This reinforces the philosophy that

software testing is intended to find bugs, not to guarantee bug-free software. Nevertheless, the goal

of these unit tests is to exercise typical features of REportal and determine the behavior of each

service.

To create each unit test, we first inspect the user interface component that typically invokes it.

For example, the Aspect Instrumentation dynamic analyzer serivce is invoked by clicking on the

“Dynamic Analysis” button on the REportal UI. This leads to the analysis aspect.jsp web page.

This page links to other pages, namely, the uploadAspect.jsp and displayAspect.jsp pages. The code

in each of these pages effectively implements the dynamic analysis feature by invoking one or more

web services, including the Aspect Instrumentation service. Therefore, our unit tests concentrate

on using this code as a template.

Next, we inspect the use case for this feature in Chapter 3 to determine two things: first, that

we are exercising most or all of the feature in our unit test, and second, that we can determine what

prerequisites exist to using this feature. We discover that it is necessary to log a user in and open

95

a project before invoking this service. These features become the basis of the unit test setUp()

method. There, we invoke the user login service operation with a valid username and password, and

open a project.

Now, we have enough data to write our test methods. For this feature, the tests should exercise

the generation of a method list for the aspect (this is the list of methods that a user can select to

instrument for tracing). We need to be sure that the list of methods returned is a complete list of

all the possible methods in the code.1 The next feature to be tested is aspect generation. Given a

subset of the list of methods just calculated, we want to ensure that the service is generating a valid

AspectJ file to be instrumented into the code. The service is invoked and the result inspected for

correctness.

From here, variations of the test case can be created, including boundary cases (empty method

lists, etc.), bad data, operation of the service in the absense of the prerequisite setUp() conditions,

and so on. The portal is expected to be robust under all of these circumstances, and unit testing

reveals those in which operation is deficient.

The REportal unit tests are configured to automatically run when REportal is built, as part of

its ant build script. The JUnit test code is placed into the subject service’s test directory, where it

is automatically executed.

The causes of failures during these tests were discovered during the more detailed service testing

described in Section 5.1.1.

5.1.3 User Interface Testing

User interface testing is designed to ensure that the results computed at the backend are properly

displayed to the user. Browser configuration issues or different browser rendering techniques may

result in unreadable, or even incorrect results. This was a particular problem during the “browser

1In reality, this list of methods is obtained by invoking the BAT Static Analyzer service from within the Aspect
Instrumentation service; however, we are assuming no such design knowledge so that we can test the portal from a
feature perspective.

96

wars” when the original REportal was being developed, because a number of technologies used by

REportal were not compatible with new experimental or very old browsers. The primary goal of

user interface testing is to ensure correct operation across different web browsers.

The Selenium [16] web testing tool was used to accomplish user interface testing. Selenium comes

with a browser plugin for several popular web browsers. It is capable of recording a user’s actions

(see Figure 5.3). As a user clicks a link, types in text, etc., the Selenium plugin generates source

code that will instrument a browser to repeat the same test. During recording, a user may select

text, a figure, a table, etc. and instruct Selenium to verify that these elements are present in the

proper location on the web page, in which case more code is generated automatically.

Figure 5.3: Selenium web browser recorder plugin for web testing

Each of the portal’s features is executed and recorded by the plugin, and exported to Java test

97

code. The desired browser is selected as a parameter inside of this code, and executed within the

Selenium framework. A Selenium server application acts as a proxy between the browser and the test

case, and enables the test code to “drive” the browser, recreating the test. The code also validates

the results by ensuring that figures or tables are in the correct locations, the proper text is present

on the web page, and so on. These tests all passed on the first attempt.

5.2 REportal User Study

A number of students in the CS576 Dependable Software Systems course worked with REportal

both to determine how easily they become familiar with the system, and to have them perform

their own tests on the portal. Their work was quite helpful as this provided a perspective, both

in usability and in testing, that is difficult to self-assess by the original author of the system. To

become familiar with the portal, they first created a document of use cases for REportal, in which

they documented the presence, usage, and prerequisites of each feature. Most students were able

to identify and document all of the REportal features, even though their implementations were

largely hidden behind underlying services and tools. As they were using a very early and largely

undocumented version of REportal, some of them raised issues that were the result of lacking

documentation showing how a feature was to be invoked. They also reported bugs that were not

discovered during unit testing; for example, that registering the same user name more than once

sometimes worked. This issue was resolved. Some of the students even reported that services were

vulnerable to error when they were exercised independently of the user interface, because the user

interface performed checks that the services took for granted. Students also indicated that, when

a jar file is uploaded without source code, the metrics report and source code browser are largely

empty.2 This is by design, as these services depend on source code. This issue was worked around

by introducing a decompiler that operated on no-source jar files when the project was opened for

the first time. Finally, the early version of the new REportal included features that were meant for

2The metrics report will still compute binary or bytecode metrics that do not require the source code, but the
remaining elements are not filled in.

98

debugging and development purposes; for example, it was possible to manipulate the BAT XML

data repository through one of the JSP pages in REportal. This was not intended as a user-feature,

but rather as a tool to test XSLT transformations that are the basis of the static analysis queries in

the system. Users were not aware of this and some expressed confusion over the presence of these

mysterious and undocumented “features.” They have been removed for production release. As a

result of this study, some user interface elements were moved for clarity, and a logout feature was

provided.

99

6. Case Study: Adding a Service to the Portal

One of the primary benefits of the re-architected REportal is that adding a new tool should

be possible without excessive difficulty. The original and re-architected REportal provided all of

the tools described in Chapter 3 except for the Forensics service. The Forensics tool (described in

Section 6.1) is an existing application to predict code authorship. As this has impacts for software

maintenance and program understanding, it was an excellent candidate for an experiment in adding

a new service to REportal. The goal, as usual with adding services to REportal, is to expose as little

functionality as possible while reusing as much existing REportal data as possible. This experience

is detailed throughout this chapter.

6.1 Forensics Application

As discussed in Sections 3.9 and 4.3.8, the Forensics for author identification application [47, 49]

uses source code metrics to determine a author’s coding style. When an unknown code sample is

analyzed with these metrics, it is possible to predict which author wrote the code sample, given

the set of known authors. Using this technique, the authors were able to obtain better than 70%

accuracy when predicting the author, and better than 90% accuracy when predicting the top three

most likely authors. The metrics used are text-based metrics, including the depth to which an author

indents lines, use of underscores, and line lengths. After computing these and other metrics for the

known authors, the data is analyzed to determine which metrics best characterize each known author

– in other words, each author is assigned “characteristic traits.” If these “characteristic” metrics

are observed in a new piece of code, then it is possible that the author exhibiting those “traits” has

authored all or part of that code. The extent to which a match is found, or to which an author is

uniquely identified, is given as a confidence value.

There exists a GUI tool that invokes the application; however, it is rather difficult to use unless

100

one knows the order in which the various parts of the GUI are to be invoked. If a part of the program

is executed out of order, a number of exceptions are thrown and the program crashes. Moreover,

learning set files have to be added one author at a time, then followed by the unknown testing files

to be analyzed (see Figure 6.1).

Figure 6.1: Setting up the Forensics GUI tool to use two learning profiles and analyze a testing set

101

Then, as shown in Figure 6.2, one must select which metrics should be analyzed and for which

profiles, before running the report.

Figure 6.2: Setting up the Forensics GUI tool to use a database of metrics coupled to the learning
profiles previously created

As a result it takes a great deal of effort to obtain a report. Because the spirit of REportal

is to provide the high level business logic of the tool with the user’s existing project, we wish to

add the essential functionality of the system to REportal. To this end, there appear to be some

opportunities for automatic configuration of the tool. For example, REportal could use the user’s

current project as the testing set of code to be analyzed. This way, the user only needs to upload

102

sample code with known authors to be compared. Moreover, the tool could be configured to try to

use all of the avaiable metrics to obtain characteristic profiles, eliminating the need to perform any

manual configuration on the tool.

We first identify the business logic functionality we wish to expose as a REportal service. In

this case, we want a service that is capable of predicting authorship of the source files of the user’s

existing project. The only thing that should be required of the user is a set of learning code from

which to predict. All other configuration options, profiles, databases, metrics, etc., as described in

this section, should be provided automatically by REportal.

Studying the actual Forensics application API used by the GUI tool, we find that a few config-

uration settings are required to set up the profiles and metrics, not unlike the GUI tool. Ideally,

our API would expose functionality at the level of this business logic that we just discussed. To

accomplish this, we wrote a small library called the Forensics High-Level API. The High-Level API

provides only two methods to be used by the Forensics service, and is discussed in Section 6.2. It

is responsible for invoking the original Forensics API to obtain the functionality we discussed here,

and then return a report of predictions to the presentation layer.

6.2 Forensics High-Level API

The Forensics High-Level API is a library that mediates between the REportal Forensics service

and the Forensics application. As seen in Figure 6.4, the Forensics Low-Level API provides a number

of methods, of which the primary three are as follows:

• createProfile: This creates a learning set for each known author. Authors are attached to

the files that they are known to have written.

• execute: This builds the configuration of metrics and maps it to the profile, learning set and

testing set, and runs the metrics on the testing set.

• predictFiles: Based on the data collected during the invocation of the execute method, this

103

creates a mapping of unknown testing set files to their predicted authors from the learning set

of known authors. Invoking this method requires that the caller has chosen a classifier, and

mapped the authors to their files.

104

-i
n

st
a
n

ce
 :

 F
o

re
n

si
cs

 L
o

w
 L

e
v
e
l

A
P

I

+
a
d

d
L
e
a
rn

in
g

S
e
t(

p
a
ra

m
e
te

r
:

M
a
p

<
K

n
o

w
n

A
u

th
o

rs
,

K
n

o
w

n
A

u
th

o
rF

il
e
s>

)
+

p
re

d
ic

tF
il

e
s(

p
a
ra

m
e
te

r
:

L
is

t<
U

n
k
n

o
w

n
F
il

e
s>

)
:

P
re

d
ic

ti
o

n
s

F
o

re
n

si
cs

 H
ig

h
 L

e
v
e
l

A
P

I

+
cr

e
a
te

P
ro

fi
le

(p
ro

fi
le

 :
 P

ro
fi

le
,

le
a
rn

in
g

S
e
t

:
T
re

e
M

a
p

<
K

n
o

w
n

A
u

th
o

rs
,

K
n

o
w

n
F
il

e
s>

)
:

P
ro

fi
le

+
p

re
d

ic
tF

il
e
s(

te
st

F
il

e
s

:
L
is

t<
F
il

e
s>

)
:

T
re

e
M

a
p

+
e
x
e
cu

te
(t

ra
in

in
g

F
il

e
 :

 M
a
p

<
K

n
o

w
n

A
u

th
o

rs
,

K
n

o
w

n
F
il

e
s>

,
te

st
F
il

e
s

:
L
is

t<
F
il

e
s>

,
cl

a
ss

if
ie

r
:

C
la

ss
if

ie
r)

 :
 T

re
e
M

a
p

F
o

re
n

si
cs

 L
o

w
 L

e
v
e
l

A
P

I

+
fi

le
s

=
 L

is
t<

U
n

k
n

o
w

n
F
il

e
s>

+
p

re
d

ic
ti

o
n

 :
 L

is
t<

K
n

o
w

n
A

u
th

o
rs

>
+

co
n

fi
d

e
n

ce
 :

 d
o

u
b

le

P
re

d
ic

ti
o

n
s

Figure 6.3: Class diagram showing the dependencies between the Forensics application and the
REportal Forensics service via a mediating “high-level” API

105

We do not wish to burden the REportal presentation layer with the responsibility of configuring

these profiles and metrics. Instead, the High-Level API exposes two easy-to-use methods, which are

also seen in Figure 6.3:

• addLearningSet: This adds the map of known authors to known files. However, rather than

create the mapping, the presentation layer will provide a ZIP file containing a directory for

each known author, and each directory contains the files written by that author.

• predictFiles: This analyzes the list of testing set files and generates Predictions, which are

created as part of the high-level API and shown in Figure 6.3, and consist of a simple list of

the files, the predicted author, and the confidence with which that author was chosen. Again,

rather than burdening the presentation layer with building this map (which would couple it to

the service and to the tool), the presentation layer instead passes the list of source files from

the user’s current project.

Because REportal uses the data (such as the user’s project) that it already has to invoke or

implement a service, the presentation layer remains decoupled from the underlying services and

tools. If a tool were to be replaced, the presentation layer would send this data in order to invoke

the new tool, and the mediating API would be modified to translate this data into the data structures

required by the tool. This decoupling is shown by Figure 6.4.

6.3 Designing the Service WSDL

Next, a web service contract is specified that uses the functionality of the high-level mediating

API. The functionality exposed by the service is shown in Figure 4.20, and the WSDL can be found

in Section C.4. Recall that the goal of our Forensics service business logic is to expose only one

feature to the user: to identify authorship of the files in the user’s project. We must map this single

feature to the two methods exposed by the high-level API, and this is described in Section 6.3.1.

106

<<component>>
Forensics Web Service Interface

ZIP File of
Learning Set

ZIP File of
Testing Set

Default Metrics
Configuration

<<component>>
Forensics High Level API

<<component>>
REportal

<<component>>
Forensics Low Level API and GUI

IdentifyAuthor
<<implements>>

<<provides>>

<<invokes>>

<<Provided by user to>>

<<invokes and adapts>>

<<provides>>

Figure 6.4: Interactions between the Forensics tool API and our Forensics service high-level API

107

6.3.1 Implementing the Service WSDL on the Server-Side

To implement the service, the WSDL is automatically implemented as Java code. This Java code

contains one empty method, as defined by the WSDL. This method will identify authorship, given a

learning set and a testing set of files. Recall also that we wish to only burden the presentation layer

to provide these sets of files as ZIP files, with no additional configuration information. Therefore,

the service implementation must unzip these files when it receives them from the presentation layer.

The learning set directory structure is then parsed. For each top-level directory, a new author

profile is created. The files associated with that author are those contained within the directory.

Thus a Forensics application Profile can be created; however, to avoid coupling the service to the

application, this is passed to the high-level API as a simple list of author names and files. At this

point, the addLearningSet method of the high-level API is invoked, which creates all the Profiles

required by the underlying application. This behavior is irrelevant to the service.

Next, the predictFiles method of the high-level API is called, and a list of Predictions is

obtained. The Predictions list is parsed into the service return type, which is a report listing file

name, predicted author name, and confidence for each file.

6.3.2 Implementing the Service WSDL on the Client-Side

The REportal presentation layer only requires the user to upload a ZIP file containing directories

of known files, where each directory corresponds to a different known author. This is shown in

Figure 3.29. The presentation layer creates a second ZIP file containing the user’s project source

code. These two zip files are the parameters required by the Forensics service, so the service is ready

for invocation. The service invokes the high-level API, which in turn invokes the low-level API and

the underlying application (described throughout this chapter and shown in Figure 6.4). A for loop

iterates through the list of Predictions, and writes them to a tabular report on screen, as shown

in Figure 3.30.

108

6.4 Case Study Results

The author, along with a small team of developers not familiar with REportal, wrote the Forensics

service independently of REportal. This was done purposely so as to avoid any inadvertent coupling

to the portal, and also to better gage the difficulty of adding an arbitrary service, not just one

specifically written for integration with REportal.

The author coordinated with the owner of the Forensics GUI application to write a “high-level”

API specifically to interact between the service and the existing Forensics API. To do this, the

Forensics service WSDL was studied to determine the data types and the single behavior that was

decided on in the service contract. The API was written to interface with that contract in a way that

was easily invoked by the service implementation. The result is described in Sections 6.2 and 6.3.1.

Next, the service was implemented so that it invoked the high-level API and returned the results

as a simple list to the presentation layer. Finally, the service client was implemented automatically

from the WSDL, and the service URL was added to the reportal.ini file so that it can be located

by the presentation layer for invocation (see Section B.2.4). Integrating the client into REportal

required a new button on the menu of REportal features, a new page that requested the ZIP learning

set file and invoked the service client.

In total, this effort required approximately one week after training the developers, some of whom

were neither familiar with REportal nor with Service Oriented Architectures. The experience was

a success and demonstrates the reduced burden involved with integrating existing or legacy tools

into REportal by identifying the business-level functionality and exposing it while reusing as much

of REportal’s existing data as possible.

6.5 Opportunities for Automation

From this experience, it seems possible to create a “wizard” tool that would analyze a legacy tool

to find its public interfaces (this could be done via REportal’s static analysis features, for example),

109

and map these interfaces to the existing REportal data model. The result would be an automatically

generated WSDL, along with client and service stubs that invoke it. In doing so, the addition of

legacy reverse engineering or program comprehension tools to REportal could be automated; this

idea is described in more detail in Section 7.2.1.

110

7. Conclusion and Future Work

We discussed the original REportal system, and detailed the challenges that we faced in main-

taining REportal and its underlying tools. We re-engineered REportal by creating service wrappers

around its tools, and then integrating those services using a JSP-based web service client. This new

architecture allows us to maintain REportal by using XML Schema to represent the data model,

and by using XML queries to manipulate that data model. This facilitates adding new tools to the

system by insulating them in a decoupled service layer, and permits heterogeneous REportal client

instances that independently invoke the portal’s services. Using REportal as a case study, significant

potential in the area of SOA research was enabled, including a business process model and an XML

representation for reverse engineering.

7.1 Benefits

Re-architecting REportal has resulted in several benefits for the portal’s deployment, usability

and maintenance, as well as opportunities for ongoing software engineering research. These benefits

are described in this section.

7.1.1 Maintenance

The service-oriented architecture improves the usability of the portal and tools, as well as the

ability to add or upgrade tools. If, as was experienced in the past, a tool becomes incompatible

with current compilers, or a presentation feature becomes incompatible with current web browsers,

only a simple drop-in code replacement is required. New tools do not depend on or impact existing

features due to the separation of concerns inherent in the service-based approach.

111

7.1.2 Deployment

It is easy to deploy the entire system; client deployment involves distributing a single web client

whose service URLs point to the deployed service locations on the web. Customers who are not

comfortable with uploading their code to a remote service location for analysis may deploy the entire

system on their local machines; this is also a simple matter of updating the web client’s service URLs

to point to these internal locations. The only requirements are a system with the required JDK, tools

and any library dependencies, and an application server such as Apache Tomcat. In a heterogeneous

tool environment such as REportal, multiple versions of JDK and/or multiple instances of Tomcat

may be required to run the tools. Deployment details are described in Appendix B.

Because SVN was used as the revision control system for REportal’s development, getting updates

simply involves running an svn update command. The ant script builds REportal’s presentation

layer and its supporting services, and copies the war files to the Tomcat webapps deployment direc-

tory. This causes the services and REportal to be automatically updated, built and deployed. If the

user desires to distribute the services among multiple servers, it is sufficient to edit the reportal.ini

file to reflect the new service WSDL and mysql database URLs, and, if needed, change the Tomcat

ports and REportal startup script to refer to the new Tomcat ports.

7.1.3 Heterogeneous Clients

It is important to note that web services do not necessarily imply a web-based solution as

REportal provides. This is the most logical client to offer to users due to its ease of use and access;

however, it is possible to write local command line tools or custom GUI applications in any language

that run on any platform. As before, it is necessary to direct SOA clients to the deployment locations

of the individual tools being used. Currently, REportal services for static analysis are being invoked

without the aid of the web client via command line scripts that obtain the BAT XML repository and

perform XSL transformations on it to obtain query results. These scripts were intended as drop-

in replacements to the legacy Ciao scripts that had formerly been used, complete with the same

112

command line arguments, etc.; merely the implementation of the scripts must change to invoke a

service that returns an XML dataset.

7.1.4 Contributions to SOA Research

One primary contribution of a service-oriented web portal is to serve as a case study for ongoing

research into Service Oriented Architectures. For example, in creating REportal, we have described

the “business model” for performing software analysis on a subject system. This model includes

uploading the project, performing one or more common queries for relationships, metrics, dynamic

analysis data, etc., and then visualizing that data. REportal provides an extensible framework for

carrying out this business model, much like a travel agent provides generic functionality for booking

travel details.

Currently, REportal parses the output of these tools into XML formats for easy adaptation, but

even from this we can identify certain pieces of information that are more often essential to the task

of performing reverse engineering tasks. Other data (such as the Java bytecode that implements

a particular method) might be included by a tool but not essential for our portal. Ideally, we can

filter out only what is necessary for a user’s anticipated needs, in order to boost performance of the

system. It is also possible to create an complete XML Schema describing data that is required (and

optional) for certain activities, boosting compatibility between the tools, the portal, and external

work in reverse engineering.

This service-based portal also enables semi-automated service addition, binding, and orchestra-

tion. Currently, given a new service to be integrated, one must a) construct a service client that

invokes the service and wraps its results in a data structure, b) invoke that service client from a menu

in the presentation layer, and c) display its results. If the tool does not have a corresponding service,

a WSDL providing a few methods to exercise the primary features of the tool is constructed, re-

sulting in an automatically generated service wrapper that is compatible with REportal. To display

a graphical representation of the tool’s output, an adapter is needed to construct an MDG graph

113

from the tool’s output, and this MDG graph is run through the Bunch service, producing a GXL

graph that is displayed in our internally developed ClusterNav viewer. However, even this process

can be improved, and the new REportal provides a test bench for such improvements. For example,

since service generation for existing tools is a nearly automated process, a configuration file might

specify the interfaces to a tool’s primary functionality (or they can be obtained by performing static

analysis to find system methods invoked by the main() function), and the WSDL wrapper would

expose those features along with their input and output types. Moreover, it might be possible to

construct the presentation layer on the fly, invoking the WSDL methods and displaying the output

results directly to the user in a tabular representation, or as an MDG graph that is run through the

Bunch clustering service for graphical display. This is the focus of future research, using a configu-

ration file that specifies how the service dispatcher should handle the input and output types of the

tool, and is described in Section 7.2.

7.1.5 Reverse Engineering as a Business Process

Another contribution of REportal as a service-oriented architecture is that, as the “business

model” for software analysis evolves with new tools, that business process can be expressed as an

abstract BPEL process, in which generic process flow is described without specifying the actual

services that implement it. That BPEL can be filled in dynamically by REportal, removing much of

the small amount of coupling that still exists between REportal and its tools. Instead, REportal can

choose between the tools using a database of configurations that specify how to bind to the services

and pass relevant data (i.e., via the proposed XML Schema), or ultimately by dynamically locating

appropriate services using UDDI service registries and semantic service descriptions.

7.2 Future Work

Section 7.1 described a number of contributions to both the REportal system and to users of

reverse engineering tools. It also serves as a “proof of concept” for automating a service oriented

114

business process, and provides a case study upon which SOA automation techniques can be applied.

There is some current research on the automation of SOA BPEL models, and automating service

orchestration; however, for our long term research goals in SOA, it is helpful to have a well defined

universe such as reverse engineering in order to avoid the details of semantic descriptions. We are

more interested in working with the dynamic selection and binding of tools, in which an important

detail is to identify the interfaces, input and output types.

To facilitate this, however, an XML Schema is necessary to provide a common adapter between

the tools. The services must provide either a common interface to the primary data artifacts, have

a configuration that specifies how to get this data, or have a semantic description by which this

information can be determined at runtime. Because we have chosen reverse engineering tools as our

domain, we can specify an XML schema that would benefit both communities.

Using SOA, it is possible to instantiate these ideas in place of the current presentation layer,

without disrupting the existing system. An automated, BPEL-based thin client can co-exist with the

current thin JSP client, which co-exists with the existing command line interface to the tools. Such

a BPEL client is another area of future research based on this project, and will construct abstract

BPEL templates on the fly based on the tasks to be performed. It then uses dynamic service binding

to find and fill-in the actual services from a database. Again, using reverse engineering as the proof-

of-concept domain enables us to pre-populate this database with tools and services to test the BPEL

and WSDL generators as well as the service binding mechanism.

7.2.1 WSDL-Wizard Interface Design for Automated Composition

However, one challenge to a service-based portal is that many tools are not written as services;

particularly, none of the tools currently deployed on REportal were originally web services: they were

standalone console tools or tools within a GUI interface. It was necessary to wrap WSDL documents

and associated service implementations around the tools. These implementations tend to be rather

simple, as they specify the inputs and outputs of each tool (which would soon be compatible with a

115

common data model as described in Section 7.2), and the calls to the tool or the tool’s API, if one

is available.

This “service wrapping” process may seem straightforward; however, if the service composition

process is automated, it would make sense to also automate the process of wrapping the tool into a

service to be composed. We propose a tool for this as well called WsdlWizard. WsdlWizard will take

a tool and wrap it into a service by reading the main() function for its top-level function calls (called

“Front-Line Functions” or FLF [34]). These front level calls become a WSDL whose implementation

passes the inputs and outputs between the WSDL and the API as modeled by the main() function.

The result is a slightly bloated WSDL, because not all front-line functions were intended to be top

level interface invocation points as defined by the design.

This task is straightforward; however, an additional challenge lies in that REportal integrates

a heterogeneous set of tools. It would be an administrative convenience to use the same language

for the purpose of hosting the services on a homogeneous set of application servers, although this

is certainly not a requirement of REportal or web services. To integrate heterogeneous tools, it is

necessary to wrap the tool as an object library and use the Java Native Interface to wrap the tool

as a Java class, which is then wrapped as a service for invocation. To date, a proof of concept tool

has been written to convert C code into JNI-enabled Java. We have authored a prototype tool to

convert C++ classes to equivalent C calls, which are in turn compatible with JNI-enabled Java.

The drawbacks to this approach are bloated machine-generated code, hard to understand generated

code, and code that is wrapped at several layers. However, even a C wrapper will often be faster

than equivalent Java code, making Java the limiting factor. Because this code is executing over the

web in a Java application server, we postulate that this added complexity is not more than what

already exists to send the data over the network through that application server. Nevertheless, this

is an area where serious performance improvements are possible. Additionally, we argue that the

machine-generated code would not be read by a human, and can be re-generated whenever the host

program evolves; therefore, this too is hardly restrictive.

116

Appendix A. SOA Overview

Service Oriented Architecture (defined in Section 2.2) is an implementation-independent architec-

ture for distributed computing. SOA enables one to describe a contract, specifying the functionality,

inputs and outputs of a software system at the business-logic level. Services consist of components

or managed code that runs in a container such as an application server. These components may

be, for example, Enterprise JavaBeans (EJB), CORBA components, or COM objects. Similarly, a

number of application server containers exist, including Sun Application Server [20], the GlassFish

project [7] and Apache Tomcat [3].

Distributed services1 take advantage of XML data exchange, as opposed to older methods in-

cluding binary data exchange. Moreover, SOA does not prescribe a particular transport mechanism;

although TCP is the most popular choice, there is no transport protocol requirement. One could

use a UDP connection to send messages, HTTP over TCP, SMTP, FTP, and so on. This flexibility

facilitates a heterogeneous and asynchronous service environment. Of course, one requirement is

that the decision must be made, and agreed upon, by the service and caller.

Figure A.1 shows some of the primary components involved with specifying, implementing and

deploying a service oriented architecture. Each of these components are described in this chapter.

A.1 Data Type Descriptions: XML Schema

An XML Schema Document (XSD) is created to reflect the data types that will be used through-

out the system. Implementation-independent complex data types can be represented via an XSD

structured document. In the context of SOA, these data types describe the messages that are passed

from a caller to a service. The message structure determines the functionality to be invoked within

the service.

1Taken in part from http://www.cs.drexel.edu/∼bmitchel/course/cs575/lectures/SOAReferenceArchitecture.pdf

117

XML Schema

First, XML Schema specifies the data
types to be used by the service. These
are implemented automatically as
objects or data types in the developer's
choice of programming language.

An optional DTD augments this
specification by specifying the format of
data permitted in each data type.

DTD

WSDL

Next, WSDL specifies the interface to
the service in terms of the data types
specified in the XML Schema, and how
the service is invoked between the
implementing client and server.

Optional WS-* standards constrain or
specify the invocation of the service.

BPEL

WS-* Standards

Client Server

Optionally, BPEL specifies the
integration of one or more services via
their WSDL definitions.

A BPEL specification is also a web
service, and is therefore implemented
by an additional WSDL client and
server.

App Server

<<invokes>>

<<restricted by *..1>>

<<uses>>

<<uses *..1>>

<<integrates 1..+>>

<<implements>>
<<implements>>

<<implements>>

<<contained by>>

Figure A.1: Hierarchy of primary web service components.

118

For example, suppose we create an XSD that includes a type representing a sales order, and

that type contains the item number, buyer’s name, address and credit card number. We could then

create a corresponding message type in our WSDL (see Section A.2) that conforms to this schema.

In other words, we would produce an XML message identical in structure to the XSD, but includes

the appropriate data as well. This XML message would be used as part of the service invocation to

make a purchase.

For now, decisions related to XSD construction are limited to the design phase and include only

the abstract types to be created. In this way, they would map closely to the JavaBeans concept, in

which the types represent the data to be used.

A.1.1 Document Type Declaration (DTD)

XSD can be further augmented to include constraints such as valid data format and structure,

among others. This allows for data type validation constraints to be placed at design time. This is

accomplished through the XML Document Type Declaration (DTD).

Consider the following DTD example describing valid postal addresses [73]:

<?xml version="1.0" encoding="UTF-16"?>

<!DOCTYPE address [<!ELEMENT address (#PCDATA)>]

and the corresponding XML implementation:

<address>

Mr Ed U. Cate

12 Soap Street

Service City

B1 1AA

United Kingdom

</address>

Although this is a valid XML document per the DTD given above (note that PCDATA means

any “Parsed Character Data”), XML Schema allows for sequences of mandatory and/or optional

data elements through the DTD. Thus it is possible to describe the data elements of a postal address,

and their proper format. Consider a better DTD for the XML Schema, as follows [73]:

119

<?xml version="1.0" encoding="UTF-16"?>

<!DOCTYPE address [

<!ELEMENT address (name+, street, city, postal-code, country)>

<!ELEMENT name (title?, first-name, last-name)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT first-name (#PCDATA)>

<!ELEMENT last-name (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT country (#PCDATA)>

]

This DTD more precisely describes a postal address as a sequence of entries of character data,

in a hierarchical format. Particularly, an address is described as a sequence of one or more names,

followed by the street, city, postal code, and country. The resulting XML Schema document

would create data types that reflect the DTD above, and resulting XML messages would contain

data properly constrained by the DTD.

A.1.2 Schema

While it was possible to restrict the structure of XML messages using a DTD, it is not so easy

to use the same DTD to place data validation restrictions on the message [73]. To do this, the

actual types that were constrained by the DTD are created in XML schema, in which these further

validation restrictions can be placed. For example, building upon the DTD in Section A.1.1, we may

use a restriction to constrain the zip code simpleType to be a sequence of five digits, a dash, and

a sequence of four digits:

<simpleType name="zip">

<restriction base="string">

<pattern value="[0-9]5-[0-9]4"/>

</restriction>

</simpleType>

Similarly, complexTypes can be created that represent entire classes. Enumerations, sequence,

choice, and all constructs are supported by XSD. Further, other data restrictions are possible

120

including minimum and maximum length of the data, number of data elements of that type to be

included in each message (for array type processing), and so on.

The purpose of the XSD is to be imported into (or written directly within) a WSDL description

document, and serve as the basis for the messages that are passed to and from the service. This is

described in Section A.2.

A.2 Service Description Language: WSDL

The Web Services Description Language (WSDL) builds upon the design considerations expressed

in the XML Schema in Section A.1. Despite its name, WSDL is applicable to services in general,

not just to web services. It separates “what” a service does and expresses it separately from “how”

and “where” the service does it [68]. As is described in this section, a WSDL describes the data

types (Section A.2.2) that a service uses (usually imported from the XSD schema, although the XSD

schema can also be written directly in the WSDL), the messages (Section A.2.3) that are either sent

or received by the service (these conform to the data types also described by the XSD schema),

the operations (Section A.2.4) the service supports and messages that are passed as parameters and

sent as return values, the protocol(s) (Section A.2.5) over which those messages are sent (SOAP

over HTTP, etc.), and finally the physical location (Section A.2.6) at which the service is accessible.

Together these form an XML representation of the service, structured as shown in Figure A.2.

It is important to note that there is a great deal more flexibility and functionality offered by

WSDL (and XML Schema, for that matter) that is not described here. This entire section is meant

only as a quick overview of the available technology.

A.2.1 definitions Section

The WSDL definitions section serves as the root XML element of the document. It gives the

namespace and other header-type information about the WSDL document to follow. One or more

types, messages, portTypes, bindings, and services will appear in this document to define the

121

entire service.

A.2.2 types Section

As described in Section A.1, WSDL types are defined by XML Schema or any other type definition

language. Due to the popularity of XML Schema for describing WSDL types, we restrict our

conversation to this language only. Other languages for type description include RelaxNG, DTD,

the IME type system, OMG IDL, or COBOL copybooks [68]. These types can include primitive data

types, complex defined data types via XML Schema, or MIME-type binary encoded data elements.

An example of a WSDL types section is provided below:

<types>

<xsd:schema targetNamespace="http://foo.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<complexType name="address">

<sequence>

<element name="street" type="string" minOccurs="1"

maxOccurs="2"/>

<element name="city" type="string"/>

<element name="state" type="string"/>

<element name="zipCode" type="zip"/>

</sequence>

</complexType>

<simpleType name="zip">

<restriction base="string">

<pattern value="[0-9]5-[0-9]4"/>

</restriction>

</simpleType>

<xsd:schema>

</types>

The types section imports or embeds XSD directly. As such, everything inside of the types

section is of type xsd:schema. In this example, we define a complexType called an address, which

will be used in the definition of other complexTypes or in messages (see Section A.2.3), which are

the inputs and outputs to the service interface..

This address is a sequence of several items. Street addresses may consist of one or two lines.

An optional second line might specify an office number, apartment number, etc. We constrain the

122

street element by allowing it to consist of at lesat a single element (minOccurs="1"), or of up to

two elements (maxOccurs="2"). The street is implemented as an array of up to two elements in

size.

The city and state entries are straightforward string data elements. Notice, however, that

the zipCode is not of type string, but rather of type zip. This is a reference to the simpleType

zip defined in Section A.1.2. This simpleType would also be included in the WSDL types section,

and is included immediately below the complexType definition shown here.

complexType definitions are typically a series of one or more user-defined simpleType definitions,

as well as internal data types defined by the schema (including strings, integers, etc.).

A.2.3 message Section

Messages are the fundamental unit of information exchange for services. Messages can be de-

signed for input or output (this distinction is not made until the portType section described in

Section A.2.4) and are comprised of a number of message parts.

Although it is generally a good design strategy to restrict all type definitions to the types section,

it is possible to create entire data types via Messages and Message parts. Most of the flexibility that

was present in the design of the XML Schema is present for the design of the WSDL Message. Good

practice, however, is to define complex data types in the types section, and then to define message

elements consisting of just one part that is typed according to the types section.

Consider the following example, which builds upon the types example shown in Section A.2.2:

<message name="Letter">

<part name="message" type="xsd:string"/>

<part name="toAddress" type="address"/>

<part name="returnAddress" type="address"/>

</message>

In this example, a Letter message is defined to contain three elements: the message body (a

string), the toAddress and the fromAddress (both of type address, which was defined in the

types section).

123

Each message is automatically implemented as an abstract data type containing fields corre-

sponding to each part. Some of these fields may be other data types defined by the XSD in the

types section.

A.2.4 portType Section

portTypes define any number of operations that the service will support. Because services are

message driven, these operations will take as inputs and provide as outputs messages that were

defined in the messages section. It becomes clear, then, that the WSDL file results in a contract

that both the caller and the service can agree upon in terms of usage and data types. There are

four types of interactions that exist between a client and a server. They are protocols by which the

service is invoked, and these protocols are defined by the message passing behavior of the client and

the server, as follows [68]:

• One-way: A message is sent to the service from the client, and the service produces no output

in response.

• Request-response: A message is sent to the service from the client, and the service produces

an output message in response.

• Solicit-response: The service sends a message to the client and receives a response or input

from the client.

• Notification: The service sends a message without receiving any input parameters or response

from the client.

The following is a sample portType section (unrelated to the other examples throughout this

chapter) that illustrates these four protocols [68].

124

<portType name="exampleProtocols">

<operation name="oneWay">

<input message="x:m1"/>

</operation>

<operation name="requestResponse">

<input message="x:m1"/>

<output message="y:m2"/>

</operation>

<operation name="solicitResponse">

<output message="x:m1"/>

<input message="y:m2"/>

</operation>

<operation name="notification">

<output message="x:m1"/>

</operation>

</portType>

In this example, the messages are referenced from the messages defined in the message section

of the WSDL document.

Within each operation, it is possible to specify a <fault>, that is “handled” by sending a message.

The syntax of this declaration is similar to those in the <input> and <output> examples above in

that it references a message type that is sent in lieu of the output message if a fault occurs during

the invocation of that operation.

As a concrete example, consider an operation for mailing a letter using the message type we

defined in Section A.2.3. In this case, only one message was defined: the letter. Therefore, no

reply message is specified and this is a one-way operation.

<portType name="sendMailPortType">

<operation name="sendLetter">

<input message="letter"/>

</operation>

</portType>

A.2.5 binding Section

Bindings specify the format, protocol and encoding of the messages that are sent. A popular

choice for encoding and protocol is to use SOAP over HTTP. There are a number of available

protocols to choose from, each with its own advocacy group [24]. As is the general pattern in WSDL

125

documents, a binding is applied to each portType, and a protocol is assigned to each message of

each operation previously defined.

Simple Object Access Protocol (SOAP) The Simple Object Access Protocol (SOAP) [17]

allows for an XML-based lightweight transport of messages and binary data. SOAP is often (but

not necessarily) sent over the TCP transport layer via HTTP(S). One could send SOAP data over

other protocols such as SMTP or FTP. Service messages defined by the WSDL are wrapped in a

SOAP body, combined with header information known as a SOAP header, and finally sent as

a single unit called the SOAP envelope. At this point, the messages are processed via standard

XML parsers on both the client and the server side.

Apache Axis [2, 5] is a newer implementation of the SOAP transport and XML processor. Axis

will be discussed in more detail in Section 2.2.4.

There are two options for sending SOAP messages [68]:

• Document style: Document style basically means that all the parts of the <message> are

inserted into the SOAP envelope as children of the <Body> element. That is, the data elements

in a message correspond to an XSD in the types section. This style is currently preferred by

the .NET platform.

• RPC style: RPC style basically means that all the parts of the <message> are wrapped

in some outer element representing the RPC. Then that resulting single wrapper element is

inserted as the single child of SOAP’s <Body> element. In other words, the schema and type

information is embedded into the message section. This style is currently preferred by the

Java platform.

Moreover, there are two types of uses of each style. These are called encoded and literal [23].

The encoded type specifies the corresponding XSD data type associated with each data element

within the message, whereas the literal style does not. The document/literal style is the most

common style and usage when using SOAP over HTTP.

126

An example of a SOAP <binding> is provided here, and builds upon the portType defined in

Section A.2.4:

<binding name="sendMailBinding" type="sendMailPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="sendLetter">

<input>

<soap:body use="literal"/>

</input>

</operation>

</binding>

This specifies that the sendMail portType (and its associated message) is implemented via the

document/literal encoding.

A.2.6 service Section

Finally, the service itself can be defined in the <service> section. The service takes each binding

and assigns to it a physical address. For example, if SOAP over SMTP were used as a particular

binding, the service would point to an email address. In the typical case (in this paper, that’s SOAP

over HTTP), the service location will be a Uniform Resource Identifier (URI) such as a web URL

or email address.

Consider an example of a <service> section, which maps the portType to the web location

where the service can be invoked (by sending messages to the service that correspond to the message

structure defined in the WSDL).

<service name="SendLetterService">

<port binding="sendMailBinding"

name="sendMailPort">

<soap:address location="https://localhost:8080/SendLetter"/>

</port>

</service>

The service specifies a location for the service binding, which aggregates one or more port types

(operations). An operation is specified by the input and output messages, if any, that it receives

and sends. Because messages are aggregations of one or more types defined in XSD, each part of

the WSDL definition builds upon the one before. This relationship is shown in Figure A.3.

127

A.3 Quality of Service and Security Constraints

In addition to its simplified design, SOA provides a number of Quality of Service (QoS) re-

quirements that are also defined by additional XML documents. Because messages sent between

services are standardized in XML, normal XML technologies apply including fast parsing, security,

permissions, encryption and compression. These are known as the WS-* standards: they are XML

addons to a WSDL document to provide additional constraints, protocols, search information, etc.

Particular details of each standard are outside the scope of this document, but they are discussed

at length in the literature [68, 73, 39].

A.4 Service Discovery: UDDI

Universal Description, Discovery, and Integration (UDDI)2 is the first step in integrating and

using existing services. UDDI is intended to describe an entity’s business-level services, and to

discover and integrate with other services that are provided by external entities [66].

UDDI registries store and provide a number of pieces of information about services. These

include a white pages that feature contact information for the services and the companies that

house them, a yellow pages that contain more semantic information including provided services

and auxiliary query information, and a green pages that contain location information and other

logistics for actually invoking a web service. As has been the case throughout this paper, UDDI

definitions are also provided via structured XML documents.

A number of public UDDI registries exist, though at present most UDDI registries are held

within private intranets. Similarly, there are a number of UDDI implementations (and alternatives)

for various platforms, including Business to Business XML (ebXML), Jini, and the Java API for

XML Registries (JAXR) [55].

Like WSDL portTypes, a UDDI service description describes the interfaces offered by a service.

In UDDI, these descriptions are called tModels. Searches (inquiries) are performed on the UDDI

2For more information, see [21].

128

registry to find services that have been published that match the given search criteria.

A.4.1 Using UDDI

Several APIs exist to query UDDI service registries, including UDDI4J [22]. Using the metadata

obtained from the UDDI registry jUDDI+ can perform automated matchmaking services based on

UDDI metadata [32].

The UDDI publish and inquiry operations are summarized here [22, 11]. In both operations, a

UDDI4J UDDI Proxy is created that contains the URLs to perform search and inquiry operations.

Publish To publish a service to a UDDI registry, the publisher must first authenticate with the

UDDI registry. This is done with an authentication token. Then, a BusinessEntity is created

and registered on the server that represents the publishing company or entity. The registry returns

a unique key to the publisher, and the publisher can use that key, a tModel that describes the

publishing scheme, and a list of categories to further categorize the publisher within the registry.

This process is essentially repeated for a tModel, which describes the service to be published. This

results in a tModel key returned from the server, which is used to actually publish an actual service

and bind it to the tModel interface description.

Inquiry UDDI4J can also search a UDDI registry [11]. The proxy is called with the desired search

terms, and the corresponding tModel and access information is returned.

A.5 Business Process Execution Language: BPEL

Because services are a primitive unit in SOA, they can be composed just as objects are in

the OO paradigm to create new applications according to business processes. This is called service

orchestration. Unlike objects, services are also registered with a name service that can be searched.

In this way, services can be dynamically found, bound, and consumed at runtime. An interesting

and open problem (discussed in Section A.6) is to dynamically bind to services based on a query of

129

that service’s auxiliary semantic information, which may have been specified by an external standard

like DAML-S (described in Section A.6.1). In other words, based on a search criteria, an application

will automatically find, gather and use services that implement some higher level business process.

BPEL4WS is a language that describes composability of web services, much as a WSDL document

describes service details of a web service [45, 60, 67]. It includes primitives to invoke, reply to,

and receive invocations, and to coordinate between services during execution. These operations

are further composed into more complex workflows, creating a system of coordinated services.

Using BPEL, services are connected via their port types, thus exposing their operations to one

another according to the contract specified by their corresponding WSDL. BPEL describes web

service composition in either a concrete or an abstract manner. Abstract workflow descriptions need

not explicitly specify which services are to be bound. Moreover, there are three methods for binding

to services through BPEL [45]:

• Design Time: Partner services are paired at design time, such that the services in question

are hard coded into the BPEL description.

• Deployment Time: Partner services are paired when the process is deployed, enabling dis-

covery of suitable services after the BPEL process is designed.

• Run Time: Partner services are not paired until they are needed. This is the most generic

method of binding partner services, and typically uses a registry service such as UDDI to locate

suitable services.

The distinctions between and the implications of these binding methods are discussed in Sec-

tion A.6.

A.5.1 BPEL Development Environments

ActiveBPEL [1] provides a visual environment for designing a BPEL-based service composition.

130

BPEL is geared towards “programming in the large”, which supports the logic of business

processes. These business processes are self-contained applications that use Web services

as activities that implement business functions. BPEL does not try to be a general-

purpose programming language. Instead, it is assumed that BPEL will be combined

with other languages, which are used to implement business functions (“programming in

the small”) [28].

To accomplish this, BPELJ [28] is a system that combines BPEL with Java constructs for service

integration.

On the other hand, not everyone believes that the WS-* standards adequately support reliable

service composition. For example, it has been argued [30] that standards like WS-Reliability are

insufficient for reliable service composition, and alternatives like AO4BPEL [30], a middleware con-

tainer, might better manage BPEL processes. The goal of this aspect-based container is to “address

non-functional concerns in BPEL processes” including persistence, message and transaction reliabil-

ity, and security [30]. These features are provided as aspects, and are framework-level functionality

available to the BPEL process.

Another such composition manager is WSCE: A Flexible Web Service Composition Environ-

ment [72]. They motivate the problem by indicating the need for a web services simulated environ-

ment, because services in production mode would change the state of the world as they execute. This

alone, however, could be addressed by separating test and production servers. However, WSCE also

provides a visual environment for simulating the deployment and execution of business processes.

SWORD: A Developer Toolkit for Web Service Composition [61] is intended for “semi-automatic”

service composition. To do this, SWORD takes an entity-relationship graph of the data inputs and

outputs of each action, and then maps the actions to one another. SWORD takes “what it knows”

from user input, and what it “wants to know” as its desired result state, and uses the given actions

that will take the inputs and intermediates to attain that result. It is, then, a rule-based service

composition environment. Fully automated service composition (in which services are found “on the

131

fly”) is described in Section A.6.

A.6 Using Semantics for Automated Service Discovery and Composition

The composition of web services requires compatibility between those web services, from a syntac-

tic and from a semantic point of view. Syntactic compatibility is enforced by WSDL: if two services

cannot agree on their message formats and data exchange, they will not be inter-operable. Ideally,

if services are sufficiently loosely coupled to one another, they become interchangeable during the

execution of a business process. If a service goes down, introduces a bug, or does not meet a desired

non-functional requirement such as speed or security, another service can be invoked in its place.

Moreover, entire applications can be defined simply by defining the business-level functionality, and

services to achieve that goal could be automatically discovered and incorporated into the composed

business process.

All of this involves applying semantics to many of the concepts discussed in this document, in-

cluding automatic service discovery, and automatic service composition. There are four types of

incompatibilities when integrating services: structural, value, encoding, and semantic [62]. In one

approach [62], static and dynamic analysis techniques are used to identify compatibility between

services, semi-automatically generate a middleware adapter to address incompatibilities, and in-

troduce a framework in which to design compatibility-friendly services. Semantic interoperability

among services remains an open problem. Open research in this area includes the Semantic Web

and Semantic Markup Languages, which are described in detail in Section A.6.1.

It is possible, for example, to create a service that can be executed based on certain WSDL

contractual specifications, yet does not produce the expected results. This is a value incompatibility.

As another example, a service that is semantically compatible with another service in terms of

its data exchange, but is incompatible in terms of the structural makeup of the messages, has

a structural incompatibility. An encoding incompatibility exists when services have compatible

structure and values, but differing XML schema [62], and a semantic incompatibility is essentially

132

a service mismatch in terms of actual functionality provided.

Another approach uses semantic meaning to facilitate semi-automatic composition of web ser-

vices [63]. This approach uses some user interaction to pick the services to be invoked, but semantics

are used to filter this list to a manageable size. DAML+OIL (described in Section A.6.1) and the

Web Ontology Language (OWL) are used to provide this filtering mechanism.

A.6.1 DARPA Agent Markup Language (DAML-S): Semantic Markup for Web Ser-

vices

The DARPA Agent Markup Language (DAML-S) [6] provides a language, taxonomy and catego-

rization (called an ontology) for adding semantics to web service descriptions to facilitate automated

discovery and, ultimately, automated composition. DAML-S provides an ontology for describing pro-

cesses at the business logic level, it provides for ontology extensions for describing QoS attributes,

locality, and so on. It is used to describe what a service does, how to access it, and how it works.

For example, a process might include a sequence of conditionals that repeat while another condition

is met. This is captured in the DAML-S Process Ontology.

There are three kinds of process types described by the Process Ontology [71]. They are called

atomic processes, composite processes, and simple processes. Atomic processes consist of a

single, uninterruptable operation. Simple processes are similar but do not have the atomic property.

Composite processes are compositions of other processes.

One possible open problem is to automate the creation of DAML-S representations from available

WSDL and UDDI metadata. Current service based systems tend not to provide rich metadata for

this type of searching and composition. As a result, most matchmaking services have to simulate a

service environment that provides this metadata.

133

Figure A.2: Syntactic Structure of the WSDL 1.1 Language [68]

134

<<component>>
Service

<<component>>
Binding

<<component>>
PortType

<<component>>
Message

<<component>>
Type

Specifies the encoding style of each port type

Specifies the service location, where the port types can be invoked

Maps messages to operations as inputs and outputs

Aggregates one or more types into messages that are passed between service and caller

Figure A.3: Relationship among WSDL part definitions

135

Appendix B. Installation and Deployment

In this appendix, we describe the installation and deployment instructions for REportal. In

most cases, a quick configuration is required to point REportal to the appropriate builds of JDK

instances and the mysql database (described in Sections B.2.1 and B.2.2). The prepackaged REportal

distribution includes an apps dist directory which contains the binary builds for these applications.

However, users who wish to build REportal from source, or run REportal on a platform other than

Linux or MacOS must manually install JDK instances and mysql before configuring them for use.

This process can be automated to a large extent; nevertheless, this appendix describes the entire

procedure as a manual process to familiarize the user with the technical details of the REportal

environment.

Throughout this appendix, we refer to $REPORTAL ROOT, which is assumed to be the root

directory in which REportal is installed.

B.1 Building from Source Code

It is possible to build REportal from source. To build REportal from source code, a few steps

are possible. First, one may need to edit the project.properties and set the JDK in use to be one

appropriate for building the service. In most cases, the default JDK will do, and thus no change

is required. However, for instance, in the case of the BAT Analyzer Serivce (located in $REPOR-

TAL ROOT/services/BATAnalyzerService, one must set the JDK to specifically use JDK1.5. This

is because the BAT program depends on JDK1.5.

To make this change, one must edit the file:

$REPORTAL ROOT/services/BATAnalyzerService/nbproject/project.properties

and add a line such as the following:

platforms.soylatte.home=$REPORTAL ROOT/apps dist/soylatte16-i386-1.0.2

136

This creates a platform called soylatte (a MacOS JDK1.6 distribution), and sets its path. Also

in the file is an entry called platform.active, which must be set to the desired platform. In this case,

we set:

platform.active=soylatte

to use the platform we just added. In the apps dist directory under REportal, we included JDK1.5

and JDK1.6 for Linux, as well as the soylatte JDK1.6 for MacOS. If another platform is used, it

may be necessary to install an additional JDK (as is required per Section B.2.1) and have each

project.properties file point to that JDK installation using this procedure.

To build services in REportal, one must set the classpath for each service. Classpaths should

point to any library dependencies of the service. This is done by default; however, if one is authoring

a new service based on an existing service’s project structure, a few steps are necessary to do this.

First, one should add a file.reference line to the project.properties file found in the nbproject

directory. This line is of the form:

file.reference.xstream-1.1.3.jar=../../lib/xstream-1.1.3.jar

In this example, the file.reference.xstream-1.1.3.jar variable points to the xstream-1.1.3.jar

file in the REportal lib directory. The ../.. exist because the working directory is $REPOR-

TAL ROOT/services/NameOfService directory, and we are referring to a library file in $REPOR-

TAL ROOT/lib directory.

Next, the nbproject/build-impl.xml file, which contains the Class-Path variable, must be edited

to add the jar to the classpath. Find the Class-Path file and add the line referring to the variable

that was just created in the project.properties file.

Finally, in the file copy section of the build-impl.xml file, one must copy the library file into the

finished web application (war) file under the WEB-INF/lib directory, by adding the line:

<copy file="$file.reference.xstream-1.1.3.jar"

todir="$build.web.dir.real/WEB-INF/lib"/>

137

again, where $file.reference.xstream-1.1.3.jar refers to the variable created in project.properties.

Once this is done, one may build REportal by executing ./buildAll.sh1 from within the $REPOR-

TAL ROOT directory. This causes the REportal services (found in the services directory) to build,

followed by a service client stub for each of these services, followed by the REportal presentation

layer that requires the client stubs.

Finally, if the build is successful, the web application archives (war files) for each service and for

the presentation layer are automatically copied to the Tomcat webapps deployment directory, where

they are automatically deployed by Tomcat.

B.2 Installation

Because REportal is based on services, it is necessary to deploy a few required applications:

namely, a JDK, an application server, and an instance of mysql (all built for the target platform),

create an empty REportal database with the username and password, and deploy the war web service

application archive files into the application server. Like the build process described in Section B.1,

these steps can be scripted for automation, but are described as a manual process for illustrative

purposes.

B.2.1 JDK

Whether building from source or from binaries, it is necessary to have installed a JDK distribution

appropriate for the platform being used. Because some services require JDK1.5 and some require

JDK1.6, it is necessary to have both versions installed. As described in Section B.1, one must set

the JDK active platforms to the appropriate JDK (this is typically JDK1.5 for the BAT Analyzer

Service, and JDK1.6 for all the others).

To complete the installation of the JDKs, it is necessary to populate a few jar library files required

1These scripts assume a Linux or UNIX distribution; if using Windows or a different platform, executing the
commands found within the script should work, provided the prerequisite applications described in this appendix are
installed for the desired build.

138

by REportal. This ensures that these jar files will be in the classpath and accessible by REportal

or its services. In the case of JDK1.5, these files are copied into the $JAVA HOME/jdk/jre/lib/ext

directory, and in the case of JDK1.6, they are copied into the $JAVA HOME/jre/lib/ext directory.

These required files are:

• ForensicsSimple.jar : this program invokes the underlying Forensics author identification

application for the Forensics service.

• MetricsFramework.jar : this program computes metrics for the Metrics service.

• bunch.jar : this program executes the clustering algorithms used throughout REportal for

visualization.

• dom4j-1.6.1.jar : this library interfaces with the REportal database for the Project Manager

service.

• grappa1 2.jar : this library enables the visualization of dotty graphs, which are output by

Bunch and the clusternav ClusterViewer program.

• jode-1.1.2-pre1.jar : this application is a Java decompiler. Using reverse engineering, its

interface was obtained, and is invoked to decompile non-source Java projects uploaded to

REportal.

• xstream-1.1.3.jar : this library enables serialization of objects into XML for transmission

over the network between services.

These files can all be found in the $REPORTAL ROOT/lib directory for copying.

B.2.2 Application Server

Once the JDK is installed, the startAll.sh script must be modified so that Tomcat uses these

JDK directories. In the startAll.sh file, one notices the following line, which starts one of the two

instances of Tomcat.

139

./startTomcat.sh 8084 $JAVA HOME &

The startTomcat.sh script takes two parameters: the Tomcat working directory location, and the

JDK to use. The Tomcat working directory location is located in the $REPORTAL ROOT/apps dist/apache-

tomcat-5.5.25/bases directory, and contains the configuration files (in the conf directory), war file

deployments (in the webapps directory), etc. For convenience, the name of the directory is the same

as the port number that this instance of Tomcat is configured to use.

In addition to starting Tomcat, the startTomcat.sh script (which is called automatically by the

startAll.sh script, and thus not invoked by the user) also specifies the Java endorsed libraries

directory to be used by Tomcat. JDK1.6 introduces a bug into Tomcat because it ships with an

early version of the Soap with Attachments API for Java (SAAJ). This library takes precedence

over the more current versions of SAAJ, causing Tomcat to fail. By setting the endorsed directory

before starting Tomcat, one can specify a location where the most recent version of the SAAJ

libraries reside. The endorsed directory takes precedence over libraries included with the JDK,

which works around this error. Here, the endorsed directories are $JAVA HOME/jre/lib/endorsed

for JDK1.5 and for JDK1.6, although the SAAJ libraries are only needed in the JDK1.6 endorsed

directory. The files copied to this directory are:

• jaxb-api.jar

• jaxb-impl.jar

• jaxws-api.jar

• jsr173 api.jar

• saaj-api.jar

140

Configuration for CGI Scripts and SSL

Tomcat is configured to use SSL on its primary port (in this case, ports 8080 and 8084 are used

by the two instances of Tomcat). The Tomcat running on port 8084 arbitrarily hosts the REportal

presentation layer; for convenience, a non-SSL port 8443 is configured by this Tomcat instance as

well. REportal comes with self-signed certificates for encryption; however, one may desire to create

or install a different certificate for use.

To do this, one must install the certificate into the two JDK instances (one JDK for each in-

stance of Tomcat). To install a certificate (self-signed2 or otherwise), one follows the steps given in

Table B.1.

2To generate a self-signed certificate, see http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/Security6.html.

141

Table B.1: Commands to install an SSL certificate

cd $REPORTAL_ROOT/apps_dist

These commands import a certificate

and into the JDK 1.5 and 1.6 keystores.

keytool -import -v -trustcacerts -alias tomcat -file

apache-tomcat-5.5.25/server/server.cer -keystore

jdk1.6.0_03/jre/lib/security/cacerts

keytool -import -v -trustcacerts -alias tomcat -file

apache-tomcat-5.5.25/server/server.cer -keystore

jdk1.5/jdk/jre/lib/security/cacerts

These commands create a Tomcat keystore

and import the server certificate into

the keystore.

The keystore is the same for both Tomcat

instances, so it is copied

into the other Tomcat keystore location

keytool -genkey -alias tomcat -keyalg RSA -keystore

apache-tomcat-5.5.25/bases/8084/keystore

keytool -export -alias tomcat -storepass changeit -file

apache-tomcat-5.5.25/server/server.cer -keystore

apache-tomcat-5.5.25/bases/8084/keystore

cp apache-tomcat-5.5.25/bases/8084/keystore apache-tomcat-5.5.25/bases/8080

These commands import the certificate into the JDK keystores

keytool -import -v -trustcacerts -alias tomcat -file

apache-tomcat-5.5.25/server/server.cer -keystore

jdk1.5/jdk/jre/lib/security/cacerts

keytool -import -v -trustcacerts -alias tomcat -file

apache-tomcat-5.5.25/server/server.cer -keystore

jdk1.6.0_03/jre/lib/security/cacerts

142

Next, it is necessary to configure Tomcat to use CGI scripts on the instance that is running

the REportal JSP front-end. This is because a CGI script, webdot.pl is used by the clusternav

cluster graph viewing application to render dot graphs. CGI is disabled by default for security;

to enable it, one must rename the servlets-cgi.renametojar file to servlets-cgi.jar in the $TOM-

CAT HOME/server/lib directory. Next, in the $TOMCAT HOME/bases/8084/conf/web.xml file,

uncomment the cgi section, and the cgi servlet mapping definition. This enables the web/cgi-bin

directory for cgi scripts.

B.2.3 Database Setup

The next step is to install and configure the database. The database server is mysql. One should

install mysql for the platform being used.

The first step is to set the root password on the mysql instance. We will use the password

repadmin, which is the one used by REportal by default. We discuss how to use a different password

in Section B.2.4. Table B.2 shows how to set the root password on the database.

Table B.2: Commands to configure the mysql database

cd $MYSQL_ROOT

./bin/mysqladmin -u root -h localhost password repadmin

The database is started along with Tomcat upon executing the startAll.sh script. One must

modify the following line in startAll.sh:

cd $MYSQL ROOT ./bin/mysqld safe --port=8306 & cd ..

so that $MYSQL ROOT points to the directory in which mysql is installed.

Finally, one must install an empty REportal database into the mysql server. To do this, one

must start the mysql client and run the following commands:

143

CREATE DATABASE reportal2;

USE reportal2;

CREATE TABLE KeyTable (

KeyString BLOB NOT NULL

);

CREATE TABLE Logins (

Name CHAR(50) NOT NULL,

Password CHAR(48) NOT NULL,

LoginID INTEGER NOT NULL AUTO_INCREMENT,

FirstName CHAR(50),

LastName CHAR(50),

Company CHAR(100),

EMail CHAR(75)

UNIQUE(LoginID)

);

CREATE UNIQUE INDEX LoginIDIndex ON Logins

(

LoginID ASC

);

CREATE TABLE Projects (

ProjectID INTEGER AUTO_INCREMENT,

UserID INTEGER NOT NULL,

ProjectTypeID INTEGER NOT NULL,

ProjectName CHAR(255) NOT NULL,

ProjectDescription CHAR(255) NULL,

ProjectDataLocation CHAR(255) NOT NULL,

UNIQUE(ProjectID)

);

CREATE UNIQUE INDEX ProjectIDIndex ON Projects

(

ProjectID ASC

);

CREATE TABLE ProjectTypes (

ProjectTypeID INTEGER AUTO_INCREMENT,

ProjectType CHAR(20) NULL,

UNIQUE(ProjectTypeID)

);

CREATE UNIQUE INDEX ProjectTypesIDIndex ON ProjectTypes

(

ProjectTypeID ASC

);

INSERT INTO ProjectTypes (ProjectType) VALUES (’Java’);

INSERT INTO ProjectTypes (ProjectType) VALUES (’C’);

144

INSERT INTO ProjectTypes (ProjectType) VALUES (’C++’);

To start the mysql client, run:

mysql --user=root -h localhost --port=8306 --protocol=TCP -p &

and provide the password that was chosen earlier in this section.

B.2.4 REportal Configuration

After the application server and database are set up, it is necessary to configure REportal so

that it can locate the services that the presentation layer will execute. Moreover, it is necessary to

set the location of the mysql database and the login information so that the REportal services may

access it.

All of this is accomplished via the $REPORTAL ROOT/reportal.ini file. A sample reportal.ini

file is shown in Table B.3.

There are two sections in Table B.3: reportal and wsdl location.

145

Table B.3: Sample reportal.ini file

[reportal]

db_connect=jdbc:mysql://localhost:8306/reportal2

db_username=root

db_pw=repadmin

db_jdbc=com.mysql.jdbc.Driver

projroot=.

[wsdl_location]

AspectInstrumentation=

https://localhost:8084/AspectInstrumentation/AspectInstrumentationService?wsdl

BATAnalyzerService=

https://localhost:8080/BATAnalyzerService/BATAnalyzerServiceService?wsdl

BunchWrapper=

https://localhost:8084/BunchWrapper/bunchwrapperService?wsdl

MetricsService=

https://localhost:8084/MetricsService/MetricServiceService?wsdl

ProjectManagerService=

https://localhost:8084/ProjectManagerService/ProjectManagerService?wsdl

SourceBrowserService=

https://localhost:8084/SourceBrowserService/SourceBrowserServiceService?wsdl

TextSearchService=

https://localhost:8084/TextSearchService/TextSearchServiceService?wsdl

ForensicsService=

https://localhost:8084/ForensicsService/ForensicsServiceService?wsdl

146

The reportal section defines REportal commands, like the default location of user projects (the

Tomcat working directory, by default), and the database parameters. This includes the URL of the

database, the username and password that were chosen to configure the database in Section B.2.3,

and the class library that interfaces with the database (JDBC for mysql, in this case).

The wsdl location section defines the URL for all service WSDLs used by REportal. Normally,

one compiles WSDL client stubs with hardcoded URL values that are called by an application’s

presentation layer. To decouple the services from the presentation layer, we instead allow the

presentation layer to lookup the WSDL dynamically and instantiate a client object from the WSDL

at runtime. During source code compilation, default hardcoded client stubs are built and can also

be used. However, this approach enables one to move or replace a service, and update its location

in the reportal.ini file. One notices that the URL for all the services except for the BAT Analyzer

service are running on the Tomcat port 8084 instance. BAT, which depends on JDK 1.5, runs on the

Tomcat port 8080 instance, which is running on top of JDK 1.5. In this case, because the Tomcat

instances are running on the same computer as the presentation layer (in fact, the presentation layer

web application is running on the Tomcat port 8084 instance, though this is arbitrary), the service

URLs all refer to localhost.

B.2.5 Starting and Stopping REportal

Once REportal is installed and its supporting applications are configured, one can start the

REportal server and its services by executing:

$REPORTAL ROOT/apps dist/startAll.sh

and stop the server by executing:

$REPORTAL ROOT/apps dist/stopAll.sh

147

B.3 Usage Notes

To use REportal, visit https://localhost:8084/REportal2 from the host on which REportal

was installed (or replace localhost with the name of the host on which REportal was installed). One

might find it necessary to set the memory limits on the JRE on which the REportal web browser is

running, so that the ClusterViewer will have enough memory to render its images. To do this, one

should set the following JRE flags in the Java control panel or web browser settings, as shown in

Figure B.1:

-Xmx256m -Xms256m

Figure B.1: Sample Java control panel settings

148

Finally, it is necessary to edit the file $JAVA HOME/jre/lib/security/java.policy,3 and enable a

security permission. This permission is required by the ClusterViewer in order to visualize output.

If either this or the memory setting described in this section is incorrect, REportal may not render

images in the ClusterViewer. The rest of the portal will work normally, and the tree hierarchy in

clusternav will correctly list the entities and clusters in the graph, but no graphical display will be

present. The line that must be added to enable the security permission is as follows:

permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

A sample java.policy file, with this required permission included at the bottom, is shown in

Table B.4.

3On MacOS, if using Firefox, the java.policy file should be placed in the user.home directory.

149

Table B.4: Sample java.policy file used by the JDK

// Standard extensions get all permissions by default

grant codeBase "file:${{java.ext.dirs}}/*" {

permission java.security.AllPermission;

};

// default permissions granted to all domains

grant {

// Allows any thread to stop itself using the java.lang.Thread.stop()

// method that takes no argument.

// Note that this permission is granted by default only to remain

// backwards compatible.

// It is strongly recommended that you either remove this permission

// from this policy file or further restrict it to code sources

// that you specify, because Thread.stop() is potentially unsafe.

// See "http://java.sun.com/notes" for more information.

permission java.lang.RuntimePermission "stopThread";

// allows anyone to listen on un-privileged ports

permission java.net.SocketPermission "localhost:1024-", "listen";

// "standard" properies that can be read by anyone

permission java.util.PropertyPermission "java.version", "read";

permission java.util.PropertyPermission "java.vendor", "read";

permission java.util.PropertyPermission "java.vendor.url", "read";

permission java.util.PropertyPermission "java.class.version", "read";

permission java.util.PropertyPermission "os.name", "read";

permission java.util.PropertyPermission "os.version", "read";

permission java.util.PropertyPermission "os.arch", "read";

permission java.util.PropertyPermission "file.separator", "read";

permission java.util.PropertyPermission "path.separator", "read";

permission java.util.PropertyPermission "line.separator", "read";

permission java.util.PropertyPermission "java.specification.version", "read";

permission java.util.PropertyPermission "java.specification.vendor", "read";

permission java.util.PropertyPermission "java.specification.name", "read";

permission java.util.PropertyPermission

"java.vm.specification.version", "read";

permission java.util.PropertyPermission

"java.vm.specification.vendor", "read";

permission java.util.PropertyPermission "java.vm.specification.name", "read";

permission java.util.PropertyPermission "java.vm.version", "read";

permission java.util.PropertyPermission "java.vm.vendor", "read";

permission java.util.PropertyPermission "java.vm.name", "read";

permission java.lang.reflect.ReflectPermission

"suppressAccessChecks";

};

150

Appendix C. Service WSDL and XML Schema Definitions

C.1 Project Manager Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="http://projectmanager.service"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="ProjectManager"

xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/"

xmlns:tns="http://projectmanager.service"

xmlns:ns="http://datatypes.reportal">

<types>

<xsd:schema targetNamespace="http://datatypes.reportal"

xmlns:tns1="http://datatypes.reportal">

<xsd:complexType name="ProjectInfo">

<xsd:sequence>

<xsd:element name="name">

<xsd:simpleType>

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="userId">

<xsd:simpleType>

<xsd:restriction base="xsd:int"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="language">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Java">

<xsd:annotation>

<xsd:documentation>Java</xsd:documentation>

</xsd:annotation>

</xsd:enumeration>

<xsd:enumeration value="C">

<xsd:annotation>

<xsd:documentation>C</xsd:documentation>

</xsd:annotation>

</xsd:enumeration>

<xsd:enumeration value="C++">

<xsd:annotation>

<xsd:documentation>C++</xsd:documentation>

</xsd:annotation>

</xsd:enumeration>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="filePath">

<xsd:simpleType>

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="UserToken">

<xsd:sequence>

151

<xsd:element name="userId">

<xsd:simpleType>

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="password">

<xsd:simpleType>

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="firstName">

<xsd:simpleType>

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="lastName">

<xsd:simpleType>

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="company">

<xsd:simpleType>

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="email">

<xsd:simpleType>

<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="loginId" type="xsd:int" minOccurs="0"></xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ProjectList">

<xsd:sequence>

<xsd:element name="projects" type="tns1:ProjectInfo"

minOccurs="0" maxOccurs="unbounded">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ProjectData">

<xsd:sequence>

<xsd:element name="project" type="tns1:ProjectInfo"></xsd:element>

<xsd:element name="data" type="xsd:base64Binary"></xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

<message name="AddProjectRequest">

<part name="addProject" type="ns:ProjectInfo"/>

</message>

<message name="AddProjectResponse">

<part name="addProjectResponse" type="ns:ProjectInfo"/>

</message>

<message name="ListProjectsRequest">

<part name="listProjectsUserToken" type="ns:UserToken"/>

</message>

<message name="ListProjectsResponse">

<part name="projectList" type="ns:ProjectList"/>

</message>

<message name="UserLoginRequest">

<part name="userResponseToken" type="ns:UserToken"/>

</message>

152

<message name="UserLoginResponse">

<part name="userLoginToken" type="ns:UserToken"/>

</message>

<message name="UserRegisterRequest">

<part name="userRegisterToken" type="ns:UserToken"/>

</message>

<message name="UserRegisterResponse">

<part name="userRegisterResponseToken" type="ns:UserToken"/>

</message>

<message name="RemoveProjectRequest">

<part name="removeProject" type="ns:ProjectInfo"/>

</message>

<message name="RemoveProjectResponse">

<part name="removeProjectResponse" type="ns:ProjectInfo"/>

</message>

<message name="UploadProjectResponse">

<part name="uploadProjectResponse" type="ns:ProjectInfo"/>

</message>

<message name="UploadProjectRequest">

<part name="uploadProject" type="ns:ProjectData"/>

</message>

<portType name="ProjectManagerPortType">

<operation name="addProject">

<input name="addProjectRequest" message="tns:AddProjectRequest"/>

<output name="addProjectResponse" message="tns:AddProjectResponse"/>

</operation>

<operation name="listProjects">

<input name="listProjectsRequest" message="tns:ListProjectsRequest"/>

<output name="listProjectsResponse" message="tns:ListProjectsResponse"/>

</operation>

<operation name="userLogin">

<input name="userLoginRequest" message="tns:UserLoginRequest"/>

<output name="userLoginResponse" message="tns:UserLoginResponse"/>

</operation>

<operation name="userRegister">

<input name="userRegisterRequest" message="tns:UserRegisterRequest"/>

<output name="userRegisterResponse" message="tns:UserRegisterResponse"/>

</operation>

<operation name="removeProject">

<input name="removeProjectRequest" message="tns:RemoveProjectRequest"/>

<output name="removeProjectResponse" message="tns:RemoveProjectResponse"/>

</operation>

<operation name="uploadProject">

<input name="uploadProjectRequest" message="tns:UploadProjectRequest"/>

<output name="uploadProjectResponse" message="tns:UploadProjectResponse"/>

</operation>

</portType>

<binding name="ProjectManagerPortTypeBinding" type="tns:ProjectManagerPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="addProject">

<soap:operation/>

<input name="addProjectRequest">

<soap:body use="literal" parts="addProject"

namespace="http://projectmanager.service"/>

</input>

<output name="addProjectResponse">

<soap:body use="literal" parts="addProjectResponse"

namespace="http://projectmanager.service"/>

</output>

</operation>

<operation name="listProjects">

<soap:operation/>

153

<input name="listProjectsRequest">

<soap:body use="literal" parts="listProjectsUserToken"

namespace="http://projectmanager.service"/>

</input>

<output name="listProjectsResponse">

<soap:body use="literal" parts="projectList"

namespace="http://projectmanager.service"/>

</output>

</operation>

<operation name="userLogin">

<soap:operation/>

<input name="userLoginRequest">

<soap:body use="literal" parts="userResponseToken"

namespace="http://projectmanager.service"/>

</input>

<output name="userLoginResponse">

<soap:body use="literal" parts="userLoginToken"

namespace="http://projectmanager.service"/>

</output>

</operation>

<operation name="userRegister">

<soap:operation/>

<input name="userRegisterRequest">

<soap:body use="literal" parts="userRegisterToken"

namespace="http://projectmanager.service"/>

</input>

<output name="userRegisterResponse">

<soap:body use="literal" parts="userRegisterResponseToken"

namespace="http://projectmanager.service"/>

</output>

</operation>

<operation name="removeProject">

<soap:operation/>

<input name="removeProjectRequest">

<soap:body use="literal" parts="removeProject"

namespace="http://projectmanager.service"/>

</input>

<output name="removeProjectResponse">

<soap:body use="literal" parts="removeProjectResponse"

namespace="http://projectmanager.service"/>

</output>

</operation>

<operation name="uploadProject">

<soap:operation/>

<input name="uploadProjectRequest">

<soap:body use="literal" parts="uploadProject"

namespace="http://projectmanager.service"/>

</input>

<output name="uploadProjectResponse">

<soap:body use="literal" parts="uploadProjectResponse"

namespace="http://projectmanager.service"/>

</output>

</operation>

</binding>

<service name="ProjectManagerService">

<port name="ProjectManagerPortTypeBindingPort"

binding="tns:ProjectManagerPortTypeBinding">

<soap:address

location=

"http://localhost:8084/ProjectManagerService/ProjectManagerPortTypeBindingPort"

/>

</port>

</service>

154

</definitions>

155

C.2 BAT Static Analyzer Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="http://batanalyzer/service"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://batanalyzer/service"

name="BATAnalyzerService"

xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">

<types>

<xsd:schema targetNamespace="http://batanalyzer/service"

xmlns:tns1="http://batanalyzer/service">

<xsd:simpleType name="FileType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="JAR"/>

<xsd:enumeration value="CLASS"/>

<xsd:enumeration value="ZIP"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

</types>

<message name="BATAnalyzerServiceOperationRequest">

<part name="filePath" type="xsd:string"/>

<part name="fileType" type="tns:FileType"/>

</message>

<message name="BATAnalyzerServiceOperationReply">

<part name="part1" type="xsd:string"/>

</message>

<portType name="BATAnalyzerServicePortType">

<operation name="BATAnalyzerServiceOperation">

<input name="input1" message="tns:BATAnalyzerServiceOperationRequest"/>

<output name="output1" message="tns:BATAnalyzerServiceOperationReply"/>

</operation>

</portType>

<binding name="BATAnalyzerServiceBinding" type="tns:BATAnalyzerServicePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="BATAnalyzerServiceOperation">

<soap:operation/>

<input name="input1">

<soap:body use="literal" namespace="http://batanalyzer/service"/>

</input>

<output name="output1">

<soap:body use="literal" namespace="http://batanalyzer/service"/>

</output>

</operation>

</binding>

<service name="BATAnalyzerServiceService">

<port name="BATAnalyzerServicePort" binding="tns:BATAnalyzerServiceBinding">

<soap:address location=

"http://localhost:8080/BATAnalyzerService/BATAnalyzerServiceService"/>

</port>

</service>

<plink:partnerLinkType name="BATAnalyzerServicePartner">

<plink:role name="BATAnalyzerServicePortTypeRole"

portType="tns:BATAnalyzerServicePortType"/>

</plink:partnerLinkType>

156

</definitions>

157

C.3 Bunch Clustering Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="http://serg.cs.drexel.edu/bunch/bunchwrapper"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://serg.cs.drexel.edu/bunch/bunchwrapper"

name="bunchwrapper"

xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">

<types/>

<message name="bunchwrapperOperationRequest">

<part name="mdgInput" type="xsd:string"/>

</message>

<message name="bunchwrapperOperationReply">

<part name="gxlOutput" type="xsd:string"/>

</message>

<portType name="bunchwrapperPortType">

<operation name="bunchwrapperOperation">

<input name="input1" message="tns:bunchwrapperOperationRequest"/>

<output name="output1" message="tns:bunchwrapperOperationReply"/>

</operation>

</portType>

<binding name="bunchwrapperBinding" type="tns:bunchwrapperPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="bunchwrapperOperation">

<soap:operation/>

<input name="input1">

<soap:body use="literal"

namespace="http://serg.cs.drexel.edu/bunch/bunchwrapper"/>

</input>

<output name="output1">

<soap:body use="literal"

namespace="http://serg.cs.drexel.edu/bunch/bunchwrapper"/>

</output>

</operation>

</binding>

<service name="bunchwrapperService">

<port name="bunchwrapperPort" binding="tns:bunchwrapperBinding">

<soap:address location=

"http://localhost:8084/bunchwrapperService/bunchwrapperPort"/>

</port>

</service>

<plink:partnerLinkType name="bunchwrapperPartner">

<plink:role name="bunchwrapperPortTypeRole" portType="tns:bunchwrapperPortType"/>

</plink:partnerLinkType>

</definitions>

158

C.4 Forensics Service to Determine Code Authorship

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="ForensicsServiceRIT62936"

targetNamespace="http://j2ee.netbeans.org/wsdl/ForensicsService"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://j2ee.netbeans.org/wsdl/ForensicsService"

xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype">

<types>

<xsd:schema targetNamespace="http://j2ee.netbeans.org/wsdl/ForensicsService">

<xsd:complexType name="PredictionTuple">

<xsd:sequence>

<xsd:element name="pathName">

<xsd:simpleType>

<xsd:restriction xmlns:xsd="http://www.w3.org/2001/XMLSchema"

base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="predictedAuthor">

<xsd:simpleType>

<xsd:restriction xmlns:xsd="http://www.w3.org/2001/XMLSchema"

base="xsd:string"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="confidence" type="xsd:double"></xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PredictionTupleList">

<xsd:sequence>

<xsd:element name="predictions" type="tns:PredictionTuple"

minOccurs="0" maxOccurs="unbounded"></xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

<message name="identifyAuthorRequest">

<part name="learningFiles" type="xsd:base64Binary"/>

<wsdl:part name="testingFiles" type="xsd:base64Binary"/>

</message>

<message name="identifyAuthorReply">

<part name="predictions" type="tns:PredictionTupleList"/>

</message>

<portType name="ForensicsServicePortType">

<wsdl:operation name="identifyAuthor">

<wsdl:input name="input1" message="tns:identifyAuthorRequest"/>

<wsdl:output name="output1" message="tns:identifyAuthorReply"/>

</wsdl:operation>

</portType>

<binding name="ForensicsServiceBinding" type="tns:ForensicsServicePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="identifyAuthor">

<soap:operation/>

<wsdl:input name="input1">

<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/ForensicsService"/>

</wsdl:input>

<wsdl:output name="output1">

159

<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/ForensicsService"/>

</wsdl:output>

</wsdl:operation>

</binding>

<service name="ForensicsServiceService">

<wsdl:port name="ForensicsServicePort" binding="tns:ForensicsServiceBinding">

<soap:address location=

"http://localhost:8084/ForensicsServiceService/ForensicsServicePort"/>

</wsdl:port>

</service>

<plnk:partnerLinkType name="ForensicsServiceRIT629361">

<plnk:role name="ForensicsServicePortTypeRole"

portType="tns:ForensicsServicePortType"/>

</plnk:partnerLinkType>

</definitions>

160

C.5 Metrics Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="http://metricservice"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://metricservice"

name="MetricService"

xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">

<types>

<xsd:schema targetNamespace="http://metricservice">

<xsd:simpleType name="FileType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="JAR"/>

<xsd:enumeration value="CLASS"/>

<xsd:enumeration value="ZIP"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

</types>

<message name="MetricServiceOperationRequest">

<part name="filePath" type="xsd:string"/>

<part name="fileType" type="tns:FileType"/>

</message>

<message name="MetricServiceOperationReply">

<part name="metricResponse" type="xsd:string"/>

</message>

<portType name="MetricServicePortType">

<operation name="MetricServiceOperation">

<input name="input1" message="tns:MetricServiceOperationRequest"/>

<output name="output1" message="tns:MetricServiceOperationReply"/>

</operation>

</portType>

<binding name="MetricServiceBinding" type="tns:MetricServicePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="MetricServiceOperation">

<soap:operation/>

<input name="input1">

<soap:body use="literal" namespace="http://metricservice"/>

</input>

<output name="output1">

<soap:body use="literal" namespace="http://metricservice"/>

</output>

</operation>

</binding>

<service name="MetricServiceService">

<port name="MetricServicePort" binding="tns:MetricServiceBinding">

<soap:address location=

"http://localhost:8084/MetricServiceService/MetricServicePort"/>

</port>

</service>

<plink:partnerLinkType name="MetricServicePartner">

<plink:role name="MetricServicePortTypeRole" portType="tns:MetricServicePortType"/>

</plink:partnerLinkType>

</definitions>

161

C.6 Source Code Browser Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="http://service.sorcerer"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://service.sorcerer"

name="SourceBrowserService"

xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">

<types/>

<message name="SourceBrowserServiceOperationRequest">

<part name="path" type="xsd:string"/>

</message>

<message name="SourceBrowserServiceOperationReply">

<part name="zipOutput" type="xsd:base64Binary"/>

</message>

<portType name="SourceBrowserServicePortType">

<operation name="SourceBrowserServiceOperation">

<input name="input1" message="tns:SourceBrowserServiceOperationRequest"/>

<output name="output1" message="tns:SourceBrowserServiceOperationReply"/>

</operation>

</portType>

<binding name="SourceBrowserServiceBinding" type="tns:SourceBrowserServicePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="SourceBrowserServiceOperation">

<soap:operation/>

<input name="input1">

<soap:body use="literal" namespace="http://service.sorcerer"/>

</input>

<output name="output1">

<soap:body use="literal" namespace="http://service.sorcerer"/>

</output>

</operation>

</binding>

<service name="SourceBrowserServiceService">

<port name="SourceBrowserServicePort" binding="tns:SourceBrowserServiceBinding">

<soap:address location=

"http://localhost:8084/SourceBrowserServiceService/SourceBrowserServicePort"

/>

</port>

</service>

<plink:partnerLinkType name="SourceBrowserServicePartner">

<plink:role name="SourceBrowserServicePortTypeRole"

portType="tns:SourceBrowserServicePortType"/>

</plink:partnerLinkType>

</definitions>

162

C.7 Text Search Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="services.TextSearch"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="services.TextSearch"

name="TextSearch"

xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/"

xmlns:ns="TSMessages">

<types>

<xsd:schema targetNamespace="TSMessages" xmlns:tns1="TSMessages">

<xsd:complexType name="SimpleResponseMessage">

<xsd:sequence>

<xsd:element name="header" type="tns1:StandardResponseHeader"/>

<xsd:element name="info" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="StandardRequestHeader">

<xsd:sequence>

<xsd:element name="username" type="xsd:string"/>

<xsd:element name="projectname" type="xsd:string"/>

<xsd:element name="filePath" type="xsd:string"/>

<xsd:element name="fileType" type="ns:FileType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="StandardResponseHeader">

<xsd:sequence>

<xsd:element name="status" type="tns1:StatusCodeType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="FileType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="JAR"/>

<xsd:enumeration value="CLASS"/>

<xsd:enumeration value="ZIP"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="StatusCodeType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="OK"/>

<xsd:enumeration value="FAILURE"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="TextServiceRequestType">

<xsd:sequence>

<xsd:element name="header" type="tns1:StandardRequestHeader"/>

<xsd:element name="searchstring" type="xsd:string"/>

<xsd:element name="caseinsensitive" type="xsd:boolean"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="TextServiceResponseType">

<xsd:sequence>

<xsd:element name="header" type="tns1:StandardResponseHeader"/>

<xsd:element name="info" type="xsd:string"/>

<xsd:element name="files" type="xsd:string" maxOccurs="unbounded"/>

<xsd:element name="lines" type="xsd:int" maxOccurs="unbounded"/>

<xsd:element name="contents" type="xsd:string" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

163

</types>

<message name="TextSearchRequestMessage">

<part name="params" type="ns:TextServiceRequestType"/>

</message>

<message name="TextSearchResponseMessage">

<part name="response" type="ns:TextServiceResponseType"/>

</message>

<portType name="TextSearchServicePortType">

<operation name="RunTextSearch">

<input name="input2" message="tns:TextSearchRequestMessage"/>

<output name="output2" message="tns:TextSearchResponseMessage"/>

</operation>

</portType>

<binding name="TextSearchServicePortTypeBinding" type="tns:TextSearchServicePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="RunTextSearch">

<soap:operation/>

<input name="input2">

<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/TextSearchService"/>

</input>

<output name="output2">

<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/TextSearchService"/>

</output>

</operation>

</binding>

<service name="TextSearchServiceService">

<port name="TextSearchServicePortTypeBindingPort"

binding="tns:TextSearchServicePortTypeBinding">

<soap:address location=

"http://localhost:8084/TextSearchService/TextSearchServiceService"/>

</port>

</service>

<plink:partnerLinkType name="TextSearchServicePartner">

<plink:role name="TextSearchServicePortTypeRole"

portType="tns:TextSearchServicePortType"/>

</plink:partnerLinkType>

</definitions>

164

C.8 Dynamic Analysis via Aspect Instrumentation Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="services.AspectInstrumentation"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="services.AspectInstrumentation"

name="AspectInstrumentation"

xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/"

xmlns:ns="AIMessages">

<types>

<xsd:schema targetNamespace="AIMessages" xmlns:tns1="AIMessages">

<xsd:simpleType name="StatusCodeType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="FAILURE"/>

<xsd:enumeration value="OK"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="MakeHeader">

<xsd:sequence>

<xsd:element name="AspectName" type="xsd:string"/>

<xsd:element name="Joinpoints" type="xsd:string" maxOccurs="unbounded"/>

<xsd:element name="Options" type="xsd:string" maxOccurs="unbounded"/>

<xsd:element name="UserMade" type="xsd:string" maxOccurs="unbounded"/>

<xsd:element name="Directory" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="MakeRequest">

<xsd:sequence>

<xsd:element name="header" type="tns1:MakeHeader"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="MakeResponse">

<xsd:sequence>

<xsd:element name="header" type="tns1:StatusCodeType"/>

<xsd:element name="aspect" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="GraphRequest">

<xsd:sequence>

<xsd:element name="xml" type="xsd:string"/>

<xsd:element name="projectName" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="GraphResponse">

<xsd:sequence>

<xsd:element name="output" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

<message name="GetRequestMessage">

<part name="params" type="ns:MakeRequest"/>

</message>

<message name="GetResponseMessage">

<part name="response" type="ns:MakeResponse"/>

</message>

<message name="GraphRequestMessage">

<part name="params" type="ns:GraphRequest"/>

</message>

165

<message name="GraphResponseMessage">

<part name="response" type="ns:GraphResponse"/>

</message>

<portType name="AspectInstrumentationPortType">

<operation name="MakeAspect">

<input name="input2" message="tns:GetRequestMessage"/>

<output name="output2" message="tns:GetResponseMessage"/>

</operation>

<operation name="AIGraphXML">

<input name="input" message="tns:GraphRequestMessage"/>

<output name="output" message="tns:GraphResponseMessage"/>

</operation>

</portType>

<binding name="AspectInstrumentationPortTypeBinding"

type="tns:AspectInstrumentationPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="MakeAspect">

<soap:operation/>

<input name="input1">

<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/AspectInstrumentation"/>

</input>

<output name="output1">

<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/AspectInstrumentation"/>

</output>

</operation>

<operation name="AIGraphXML">

<soap:operation/>

<input name="input2">

<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/AspectInstrumentation"/>

</input>

<output name="output2">

<soap:body use="literal"

namespace="http://j2ee.netbeans.org/wsdl/AspectInstrumentation"/>

</output>

</operation>

</binding>

<service name="AspectInstrumentationService">

<port name="AspectInstrumentationPortTypeBindingPort"

binding="tns:AspectInstrumentationPortTypeBinding">

<soap:address location=

"http://localhost:8084/AspectInstrumentation/AspectInstrumentationService"

/>

</port>

</service>

<plink:partnerLinkType name="AspectInstrumentationPartner">

<plink:role name="AspectInstrumentationPortTypeRole"

portType="tns:AspectInstrumentationPortType"/>

</plink:partnerLinkType>

<plink:partnerLinkType name="AspectInstrumentationPartner1">

<plink:role name="AspectInstrumentationPortTypeRoleGraph"

portType="tns:AspectInstrumentationPortTypeGraph"/>

</plink:partnerLinkType>

</definitions>

166

Bibliography

[1] Activebpel. http://www.activebpel.org/.

[2] Apache axis. http://ws.apache.org/axis.

[3] Apache tomcat. http://tomcat.apache.org.

[4] Apache tuscany. http://incubator.apache.org/tuscany/.

[5] Axis: The next generation of apache soap.
http://www.javaworld.com/javaworld/jw-01-2002/jw-0125-axis.html.

[6] Daml-s: Semantic markup for web services.
http://www.daml.org/services/daml-s/0.7/daml-s.html.

[7] Glassfish project. https://glassfish.dev.java.net.

[8] Java ncss metrics computation program.
http://www.kclee.com/clemens/java/javancss/.

[9] Java optimze and decompile environment (jode).
http://jode.sourceforge.net/.

[10] The java orchestration language interpreter engine (jolie).
http://sourceforge.net/projects/jolie/.

[11] Jboss.com uddi inquiry example.
http://wiki.jboss.org/wiki/Wiki.jsp?page=UDDIExample.

[12] Jdom. http://www.jdom.org/.

[13] Junit. http://www.junit.org/.

[14] mysql sql server. http://www.mysql.com/.

[15] Saxon xml parser. http://saxon.sourceforge.net/.

[16] Selenium web tester. http://selenium.openqa.org/.

[17] Simple object access protocol (soap).
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[18] Soapui. http://www.soapui.org/.

[19] Sorcerer source code browser. https://sorcerer.dev.java.net/.

[20] Sun application server.
http://www.sun.com/software/products/appsrvr/index.xml.

[21] Uddi learning guide.
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26 gci916789,00.html.

[22] Uddi publishing with java.
http://www.phptr.com/articles/printerfriendly.asp?p=101595&rl=1.

[23] Using soap with j2ee.
http://www.awprofessional.com/articles/article.asp?p=169106&seqNum=5&rl=1.

167

[24] Xml protocol technology reference.
http://webservices.xml.com/pub/a/ws/2000/11/01/protocols/quickref.html.

[25] Craig Anslow, Stuart Marshall, Robert Biddle, James Noble, and Kirk Jackson. Xml database
support for program trace visualisation. In APVis ’04: Proceedings of the 2004 Australasian
symposium on Information Visualisation, pages 25–34, Darlinghurst, Australia, Australia, 2004.
Australian Computer Society, Inc.

[26] Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. Software visualization tools for
component reuse. In 19th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2004.

[27] Apache. Apache tomcat, May 2007.

[28] BEA and IBM. Bpelj: Bpel for java.

[29] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and Porfirio Tramontana. Migrating
interactive legacy systems to web services. In CSMR ’06: Proceedings of the Conference on
Software Maintenance and Reengineering, pages 24–36, Washington, DC, USA, 2006. IEEE
Computer Society.

[30] Anis Charfi and Mira Mezini. An aspect-based process container for bpel. In AOMD ’05:
Proceedings of the 1st workshop on Aspect oriented middleware development, New York, NY,
USA, 2005. ACM Press.

[31] Yih-Farn R. Chen, Glenn S. Fowler, Eleftherios Koutsofios, and Ryan S. Wallach. Ciao: A
graphical navigator for software and document repositories. In Proc. Int. Conf. Software Main-
tenance, ICSM, pages 66–75. IEEE Computer Society, 1995.

[32] Francesco Colasuonno, Azzurra Coppi, Stefano andRagone, Luca Scorcia, Tommaso Di Noia,
and Eugenio Di Sciascio. juddi+: A semantic web services registry enablingsemantic discovery
and composition. In The 8th IEEE Conference on E-Commerce Technologyand the 3rd IEEE
Conference on EnterpriseComputing, 2006.

[33] A. Colyer and A. Clement. Aspect-oriented programming with aspectj. IBM Syst. J., 44(2):301–
308, 2005.

[34] Dan DaCosta, Christopher Dahn, Spiros Mancoridis, and Vassilis Prevelakis. Characterizing
the ’security vulnerability likelihood’ of software functions. In ICSM ’03: Proceedings of the
International Conference on Software Maintenance, page 266, Washington, DC, USA, 2003.
IEEE Computer Society.

[35] Ugur Dogrusöz, Brendan Madden, and Patrick Madden. Circular layout in the graph layout
toolkit. In GD ’96: Proceedings of the Symposium on Graph Drawing, pages 92–100, London,
UK, 1997. Springer-Verlag.

[36] Jan Dünnweber, Sergei Gorlatch, Françoise Baude, Virginie Legrand, and Nikos Parlavantzas.
Towards automatic creation of web services for grid component composition. In Vladimir Getov,
editor, Proceedings of the Grids@Work Plugtest, Sophia-Antipolis, France, October 2005.

[37] Michael Eichberg. Bat2xml: Xml-based java bytecode representation. Electronic Notes in The-
oretical Computer Science, 141(1):93–107, December 2005. Proceedings of the First Workshop
on Bytecode Semantics, Verification, Analysis and Transformation (Bytecode 2005).

[38] J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, and G. Woodhull. Graphviz and dynagraph
– static and dynamic graph drawing tools. In M. Junger and P. Mutzel, editors, Graph Drawing
Software, pages 127–148. Springer-Verlag, 2003.

168

[39] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[40] Richard C. Holt, Andreas Winter, and Andy Schürr. GXL: Towards a Standard Exchange For-
mat. Technical Report 1–2000, Universität Koblenz-Landau, Institut für Informatik, Rheinau
1, D-56075 Koblenz, 2000.

[41] David H. Hutchens and Victor R. Basili. System structure analysis: clustering with data
bindings. IEEE Trans. Softw. Eng., 11(8):749–757, 1985.

[42] Will Iverson. Real World Web Services. O’Reilly Media, Inc., October 2004.

[43] Nirav H. Kapadia, Renato J. Figueiredo, and José A. B. Fortes. Punch — Web portal for
running tools. IEEE Micro, 20(3):38–47, /2000.

[44] Michael Kay. Defining your own functions in xquery.
http://www.stylusstudio.com/xquery/xquery functions.html.

[45] Rania Khalaf, Nirmal Mukhi, and Sanjiva Weerawarana. Service-oriented composition in
bpel4ws. In WWW (Alternate Paper Tracks), 2003.

[46] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Gris-
wold. An overview of aspectj. In Proceedings of ECOOP 2001 - Object-Oriented Programming:
15th European Conference, Budapest, Hungary, June 18-22, 2001, pages 327–354, Heidelberg,
June 2001. Springer Verlag.

[47] J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis. A Probabilistic Approach to Source
Code Authorship Identification. Proceedings of the 5th International Conference on Information
Technolog: New Generations (ITNG 2007, Las Vegas, April 7-9),. IEEE Computer Society,
2007.

[48] Eleftherios Koutsofios and Stephen C. North. Editing graphs with dotty, 1994. dotty User
Manual.

[49] Robert Charles Lange and Spiros Mancoridis. Using code metric histograms and genetic algo-
rithms to perform author identification for software forensics. In Hod Lipson, editor, GECCO,
pages 2082–2089. ACM, 2007.

[50] M. Lanza. Codecrawler — lessons learned in building a software visualization tool, 2003.

[51] Grace Lewis, Edwin Morris, Dennis Smith, and Liam O’Brien. Service-oriented migration and
reuse technique (smart). In STEP ’05: Proceedings of the 13th IEEE International Workshop
on Software Technology and Engineering Practice, pages 222–229, Washington, DC, USA, 2005.
IEEE Computer Society.

[52] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering tool for the
recovery and maintenance of software system structures. In ICSM ’99: Proceedings of the IEEE
International Conference on Software Maintenance, pages 50–59, Washington, DC, USA, 1999.
IEEE Computer Society.

[53] Spiros Mancoridis, Timothy S. Souder, Yih-Farn Chen, Emden R. Gansner, and Jeffrey L. Korn.
Reportal: A web-based portal site for reverse engineering. In WCRE ’01: Proceedings of the
Eighth Working Conference on Reverse Engineering (WCRE’01), pages 221–230, Washington,
DC, USA, 2001. IEEE Computer Society.

169

[54] Jim Melton and Stephen Buxton. Querying XML: XQuery, XPath, and SQL/XML in context
(The Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006.

[55] Sun Microsystems. Jax-r tutorial.
http://java.sun.com/developer/technicalArticles/WebServices/jaxrws.

[56] Brian S. Mitchell and Spiros Mancoridis. On the automatic modularization of software systems
using the bunch tool. IEEE Trans. Software Eng., 32(3):193–208, 2006.

[57] William M. Mongan, Maxim Shevertalov, and Spiros Mancoridis. Re-engineering a reverse
engineering portal to a distributed soa. In 16th International Conference on Program Compre-
hension (ICPC 2008). IEEE Computer Society, 2008.

[58] Aart van Halteren Nikolai Dokovski, Ing Widya. Paradigm: Service oriented computing, 2004.

[59] OASIS Committee on Service Oriented Architecture. Reference model for service oriented
architecture, 2006.

[60] Hewlett Packard. Web services orchestration.

[61] Shankar R. Ponnekanti and Armando Fox. Sword: A developer toolkit for web service compo-
sition, 2002.

[62] Shankar R. Ponnekanti and Armando Fox. Interoperability among independently evolving
web services. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware, pages 331–351, New York, NY, USA, 2004. Springer-Verlag New
York, Inc.

[63] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services using semantic
descriptions, 2002.

[64] Harry M. Sneed. Integrating legacy software into a service oriented architecture. In CSMR
’06: Proceedings of the Conference on Software Maintenance and Reengineering, pages 3–14,
Washington, DC, USA, 2006. IEEE Computer Society.

[65] Harry M. Sneed and Stephan H. Sneed. Creating web services from legacy host programs. wse,
00:59, 2003.

[66] UDDI.org. http://www.UDDI.org/.

[67] W3C. Web service choreography interface (wsci).

[68] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald F. Fer-
guson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005.

[69] T. A. Wiggerts. Using clustering algorithms in legacy systems remodularization. In WCRE ’97:
Proceedings of the Fourth Working Conference on Reverse Engineering (WCRE ’97), page 33,
Washington, DC, USA, 1997. IEEE Computer Society.

[70] Andreas Winter. Exchanging Graphs with GXL. Technical Report 9–2001, Universität Koblenz-
Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz, 2001.

[71] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau. Automating daml-s web
services composition using shop2.

170

[72] Xiulan Yu, Long Zhang, Ying Li, and Ying Chen. Wsce: A flexible web service composition
environment. In ICWS, pages 428–435. IEEE Computer Society, 2004.

[73] Olaf Zimmermann, Mark R. Tomlinson, and Stefan Peuser. Perspectives on Web Services :
Applying SOAP, WSDL and UDDI to Real-World Projects (Springer Professional Computing).
Springer, September 2003.

