
REportal: A Service-Based Web Portal for
Reverse Engineering and Program

Comprehension

William M. Mongan

1Wednesday, August 13, 2008

Agenda
Background and Motivation

REportal 1.0 Architecture

Maintenance

Re-engineered REportal

Maintenance

Research Contributions

Conclusions and Future Work

Demo

2Wednesday, August 13, 2008

Background and Motivation

REportal is a service-based reverse
engineering portal.

Users may upload code to REportal and
perform RE analysis, without needing to
install, configure and run individual
tools.

These tools were not user-friendly, and
had numerous configuration
dependencies.

3Wednesday, August 13, 2008

Challenges

REportal 1.0 was based on Java Servlets,
but the presentation layer was tightly
coupled to the tools.

The tools quickly became
obsolete, and others simply didn’t work,
hindering the functionality.

Due to coupling, it was difficult to update
the portal.

4Wednesday, August 13, 2008

REportal 1.0 Architecture
User

Management
Workspace

Management
Graph

Display

Query
Dispatcher

Shell Scripts and
APIs

Ciao

Display
Utilities

Bunch
Presentation
Layer Servlet

5Wednesday, August 13, 2008

Maintaining REportal

For example, suppose we wanted to add
a feature to REportal.

Because the interface is coupled to the
logic that executes the tool and the tool
itself, changes are needed to the
presentation code (“Display Utilities”
which prints HTML) and to the subsystem
that runs the tool.

6Wednesday, August 13, 2008

Maintaining REportal
The logic that executes the tool must be
written in Java, because REportal was
built upon Java servlets.

Otherwise, one must use native calls.

Either approach destroys portability of
language and platform.

 They turn “Display Utilities” into a
processing unit rather than a presentation
layer mechanism.

7Wednesday, August 13, 2008

Deploying REportal

REportal had several dependencies on
the operating system, including the
filesystem.

Changes to the system (i.e., upgrading
Apache) caused significant changes to
the filesystem that required re-
architecting.

For example, paths to user files would change!

8Wednesday, August 13, 2008

Deploying REportal
A specific binary of Korn Shell was required to
be in the web server’s PATH, and a number of
symlinks created by Apache had to be in-place.

Due to the dependencies on Linux binary tools,
shell scripts, interpreters, and path locations, it
was even more difficult to deploy REportal on
another host (or even to re-deploy it on one of
our servers).

The underlying problems: The presentation layer
depended on the tools, and the tools had to be
co-located with the presentation layer.

9Wednesday, August 13, 2008

Re-engineered REportal

REportal 2.0 is based on web services. This
was chosen because the architecture
decouples the interface from the tools.

Relationships between tools are based on
data via message passing in XML.

This makes it easier to maintain the tools and
to integrate legacy tools through service
wrapping.

10Wednesday, August 13, 2008

Service-Oriented Architectures

XML Schema WSDL

11Wednesday, August 13, 2008

Service-Oriented Architectures

XML Schema WSDL

ServerClient

App Server

The client and server interact by
passing XML messages that

conform to a WSDL operation.
11Wednesday, August 13, 2008

Service-Oriented Architectures

BPEL WSDLWSDLWSDL

XML Schema WSDL

ServerClient

App Server

The client and server interact by
passing XML messages that

conform to a WSDL operation.
11Wednesday, August 13, 2008

Service-Oriented Architectures

BPEL WSDLWSDLWSDL

XML Schema WSDL

ServerClient

App Server

The client and server interact by
passing XML messages that

conform to a WSDL operation.
11Wednesday, August 13, 2008

Benefits of SOA
SOA decouples the services from the
client. To change services, just send a
new XML message to a new location, etc.

This decouples the tools from the client -
the fundamental challenge with the
original REportal.

The service implementations are
language- and platform-independent;
they can be deployed on any host
without impacting the client.

12Wednesday, August 13, 2008

REportal 2.0 Architecture

The client is a thin presentation layer,
implemented using JSP.

The services expose the essence of the
tools they wrap as WSDL interfaces.

The client invokes these interfaces as it
renders the graphical or tabular report in
the display.

13Wednesday, August 13, 2008

REportal 2.0 Architecture

REportal Presentation Layer
includes JSP Web Pages and
handles User Session State.

14Wednesday, August 13, 2008

REportal 2.0 Architecture

REportal Presentation Layer
includes JSP Web Pages and
handles User Session State.

Software Forensics Service
analyzes the files in a user's
project, comparing them to a
given "learning set" of files
whose authorship is known. A
known author from the
learning set is predicted to
have authored each file in the
user's project.

Text Search Service seeks
strings and patterns in the
source code, returning a
tabular result that includes
the matching line, the file, and
the line number.

Dynamic Analyzer Service
produces an aspect to be
woven into the user's code.
The modified program
produces a call trace of the
executed features in MDG
format.

Bunch Clustering Service
invokes the Bunch Clustering
tool on MDG's produced by
querying the Static Analyzer
repository.

Project Manager Service
creates users and projects
with uploaded code or
bytecode.

Source Code Browser Service
creates a cross-referenced
HTML view of the project's
source code.

Metrics Service displays
software metrics, including
comments, CCN complexity,
and inheritence tree size for
a software system.

Static Analyzer Service
creates an XML repository
from the code. This service
also provides an interface to
query the repository and
obtain a JDOM object result,
which is represented in an MDG.

14Wednesday, August 13, 2008

REportal 2.0 Architecture

REportal Presentation Layer
includes JSP Web Pages and
handles User Session State.

Software Forensics Service
analyzes the files in a user's
project, comparing them to a
given "learning set" of files
whose authorship is known. A
known author from the
learning set is predicted to
have authored each file in the
user's project.

Text Search Service seeks
strings and patterns in the
source code, returning a
tabular result that includes
the matching line, the file, and
the line number.

Dynamic Analyzer Service
produces an aspect to be
woven into the user's code.
The modified program
produces a call trace of the
executed features in MDG
format.

Bunch Clustering Service
invokes the Bunch Clustering
tool on MDG's produced by
querying the Static Analyzer
repository.

Project Manager Service
creates users and projects
with uploaded code or
bytecode.

Source Code Browser Service
creates a cross-referenced
HTML view of the project's
source code.

Metrics Service displays
software metrics, including
comments, CCN complexity,
and inheritence tree size for
a software system.

Static Analyzer Service
creates an XML repository
from the code. This service
also provides an interface to
query the repository and
obtain a JDOM object result,
which is represented in an MDG.

14Wednesday, August 13, 2008

REportal 2.0 Architecture

REportal Presentation Layer
includes JSP Web Pages and
handles User Session State.

Software Forensics Service
analyzes the files in a user's
project, comparing them to a
given "learning set" of files
whose authorship is known. A
known author from the
learning set is predicted to
have authored each file in the
user's project.

Text Search Service seeks
strings and patterns in the
source code, returning a
tabular result that includes
the matching line, the file, and
the line number.

Dynamic Analyzer Service
produces an aspect to be
woven into the user's code.
The modified program
produces a call trace of the
executed features in MDG
format.

Bunch Clustering Service
invokes the Bunch Clustering
tool on MDG's produced by
querying the Static Analyzer
repository.

Project Manager Service
creates users and projects
with uploaded code or
bytecode.

Source Code Browser Service
creates a cross-referenced
HTML view of the project's
source code.

Metrics Service displays
software metrics, including
comments, CCN complexity,
and inheritence tree size for
a software system.

Static Analyzer Service
creates an XML repository
from the code. This service
also provides an interface to
query the repository and
obtain a JDOM object result,
which is represented in an MDG.

14Wednesday, August 13, 2008

Maintaining REportal 2.0

After developing the XML schemas,
building and deploying REportal, we
added a new tool as a service.

This process was significantly easier than
was previously possible.

The tool added was a “Software
Forensics” tool to determine source code
authorship.

15Wednesday, August 13, 2008

Legacy Tool Integration

The forensics tool works by

Computing metrics on code whose author is
known (computing the “learning set”).

Determining which metrics best characterize an
author.

Computing metrics on code whose author is not
known (the “testing set”), and predicting the
author based on these characterizations.

16Wednesday, August 13, 2008

Legacy Tool Integration

Using the existing REportal XML Schema,
we use the user’s project as the testing
set.

The user is only required to upload a
learning set, which is a ZIP file of sample
code, with one directory per author.

17Wednesday, August 13, 2008

Research Contributions
Because REportal integrates tools as XML-
based services, we developed XML schemas
for program comprehension.

For example: “how was this feature built?”

REportal Presentation Layer
includes JSP Web Pages and
handles User Session State.

Dynamic Analyzer Service
produces an aspect to be
woven into the user's code.
The modified program
produces a call trace of the
executed features in MDG
format.

Bunch Clustering Service
invokes the Bunch Clustering
tool on MDG's produced by
querying the Static Analyzer
repository.

Static Analyzer Service
creates an XML repository
from the code. This service
also provides an interface to
query the repository and
obtain a JDOM object result,
which is represented in an MDG.

18Wednesday, August 13, 2008

Research Contributions
BPEL defines service composition.

Abstract BPEL processes do not specify
actual services to invoke, but lay out a
process template that can be filled in.

In this way, services can be dynamically
found, bound, and consumed at runtime.

This is an open problem

As a result of this effort, one could create
RE tool sequences at runtime, using data
that we already have.

19Wednesday, August 13, 2008

Conclusions
XML-based tool integration has enabled
the REportal tools to utilize one another
to obtain more thorough program
comprehension data.

Deployment of the client is much easier,
and development of new clients is
possible.

The SOA architecture of REportal
facilitates new tool integration with fewer
changes to the architecture or
presentation layer.

20Wednesday, August 13, 2008

Conclusions

Moreover, REportal is an example
instance of an architecture for general
tool integration.

Although it provides the practitioner with
easy access to practical RE tools, it also
represents a study in the evolution and
architecture of tool-based web portals.

21Wednesday, August 13, 2008

Future Work

This architecture evolution can be taken
further.

We would like to automate the addition
of new tools by automatically:

Wrapping the tool into a service,

Binding values from our project database
(schema) to the services’ inputs and outputs, and

Generating an abstract BPEL, mapping it to the
service inputs/outputs, and invoking it.

22Wednesday, August 13, 2008

Questions?

23Wednesday, August 13, 2008

Approach to Tool Integration
We inspect the front-line functions of the
tool to determine its high level interface.

Then we write a service that mimics this
interface with an XML Schema that
provides the required inputs and outputs.

Ideally, some of these inputs and outputs come
from the existing REportal XML Schema.

The service is implemented and
deployed, and the client is integrated into
the REportal thin front-end.

24Wednesday, August 13, 2008

Service Integration
Services are wrapped around the
individual RE tools, which have varying
platform requirements.

Since services pass XML, they need only
agree on the data types that must be
shared between layers.

This gives rise to a standard XML schema
for program understanding that can be
used to wrap additional tools quickly.

25Wednesday, August 13, 2008

Service Testing
Unit testing tests at a feature-level.

User interface testing validates the web
browser display and interface. This is
important as different browsers render
differently.

Service-level testing tests at the message-
passing level. XML messages are sent to
the service to invoke it, and the response
message is valdiated.

26Wednesday, August 13, 2008

Service Composition

Services are composable (like objects) to
create new applications according to
business processes.

Unlike objects, services are also
registered with a name service that can
be searched.

Composition is described by another web
service definition: the Business Process
Execution Language (BPEL).

27Wednesday, August 13, 2008

