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Abstract
Predictive Analytics on Real-Time Biofeedback for Actionable Classification of Activity State

William M. Mongan
Adam K. Fontecchio, Ph.D.

Continuous biomedical monitoring has the potential to improve quality-of-care for patients as well as

working conditions for medical practitioners over the current state-of-the-art. Currently, Emergency

Medical Technicians in the field carry monitoring equipment that can weigh over 50 lbs, and manually

communicate information back to hospital physicians. For patients, medical monitoring is carried

out using tethered equipment that must remain attached for hours or days, and must be removed

when the patient must get up to walk or use the restroom. Data lapses during these disconnected

breaks can be misinterpreted by medical staff as a medical event, and true medical events can be

missed as a result of non-monitoring. Further, being still for extended periods of time can exacerbate

the very risks being treated, due to the increased risk of a blood clot while remaining stationary

during monitoring.

Radio Frequency Identification (RFID) technology is traditionally used as a battery-free chip

embedded into an item for inventory management. As the chip is placed within the field of an

RFID interrogator, one or more interrogation waves are reflected off of the chip and observed at the

interrogator site. The reflected signal is encoded by the chip with an identifier which is typically used

for inventory purposes. Multiple interrogation signals are typically employed to overcome collisions

and to ensure that a viable interrogation takes place while the chip is in range of the interrogator.

We take advantage of this property of RFID technology by knitting a metallic antenna around the

tag and embedding the system into a wearable garment in an unobtrusive way. We re-purpose

the use of RFID by observing small perturbations in the physical properties of the reflected signal

for each interrogation of the tag. As the wearer moves about, changes in the knit antenna shape

result in changes to the properties of the reflected signal as it is regularly and frequently polled by

the interrogator. These physical changes are small and subject to noise interference both from RF,
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movements in the environment around the subject, and movements by the subject directly; however,

we fuse signal processing and machine learning approaches to estimate biomedical properties of the

wearer such as respiratory rate, apnea, uterine contractions, and stationary limbs. As a result, we

introduce a wearable technology platform supported by real-time analytical software that enables

unobtrusive, continuous, ambulatory monitoring of strain or movement biomedical artifacts.

Abstract
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Part I

Introduction and Background
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Chapter 1: Introduction

1.1 Overview and Motivation

Tethered movement-based medical monitoring devices are used in many inpatient and outpatient

settings, including Deep Venous Thrombosis (DVT) onset monitoring1, respiratory monitoring2,

and uterine monitoring during labor and delivery3. Continuous respiration monitoring has the

potential to predict the onset of acute medical conditions such as apnea4 and sepsis5. Decreased

mobility can also lead to acute conditions such as venous thromboembolism (VTE)6. Additionally,

the use of graduated compression stockings are often used when patients are immobilized, but

discomfort during use and prolonged wear may result in reduced compliance7 that could benefit

from an unobtrusive wearable solution.

Tethered monitors require surface area on the body, can be irritating to the body due to the

adhesive nature of the sensors, and require that the subject be relatively stationary in the mon-

itoring setting. Requiring stationarity can be counterproductive to the monitoring being sought,

and infeasible in circumstances that require several hours of monitoring when other bodily functions

arise. Emergency Medical Technicians (EMT) in the field carry monitoring equipment weighing

50-75 lbs in addition to potentially moving the patient, and have higher workload interpreting data

and communicating information back to hospital and physicians8. Further, telemetry of monitoring

data may require bulky, possibly tethered equipment, and emergency medical personnel percep-

tions of ease of use of devices may affect the likelihood of their perceived usefulness and subsequent

deployment9.

Using Radio Frequency Identification (RFID) tags embedded within a knitted antenna and wear-

able garment “Bellyband” (see Figure 1.3), both strain-gauge movements (such as stretching the

garment due to respiratory activity) as well as gross movement (such as walking around a room)

can be monitored wirelessly using a passive smart-garment device that requires no tethered power

source10. A 900 MHz RFID interrogator supplies power wirelessly to the RFID tag via polling
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with a wireless signal that is backscattered from the tag and antenna11. RFID is traditionally used

in inventory management systems, such as that seen in highway toll collection, or retail inventory

tracking. As summarized in Figure 1.1, the RFID interrogator polls the field for any available RFID

tags, and any tags in the area are excited by the signal.

Figure 1.1: A general overview of physical RFID interrogation

As an example, for an infant respiratory monitoring application, the Bellyband is worn about the

abdomen or integrated into a onesie or other garment, which stretches and retracts with abdominal

respiratory motion. The antenna is regularly polled at a high rate (i.e., 90 Hz), and as the antenna

stretches, the strain is observed via changes in the RFID Received Signal Strength Indicator (RSSI)

signal power reflected from the antenna, as shown in Figure 1.2. An RFID-based heart rate monitor

is enabled via a low-power circuit that disables the RFID interrogation response for a short period

of time when an electrocardiogram (ECG) signal is observed from the heart12. The circuit and the

Bellyband RFID chip are energized using power harvested from the wireless interrogation signal

itself, so no battery is required in either wearable device.

To facilitate implementation in the small space of an RFID tag, and with low- to no- power

consumption, a non-sophisticated singulation protocol is executed on the RFID tags to reduce the

number of collisions in the tag responses. The singulation protocol is based on the slotted-ALOHA

anti-collision algorithm in which each tag uses a random-number generator to decide whether to

respond in a given time slot. This process is repeated until all tags in the population have responded,

at which time the entire process repeats again13;14. The RFID backscatter response is encoded

Chapter 1: Introduction 1.1 Overview and Motivation
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Figure 1.2: RSSI time-series data plotted over time for approximately 40 seconds; although
oscillatory motions can be observed every second, smaller perturbations in the data obscure
this signal due to the RFID interrogation frequency changing every 200 milliseconds

with a tag identifier such as the 96-bit Electronic Product Code (EPC, a.k.a., EPC96)15, and the

identifier is used as a primary key in a database to obtain the details of the tag being considered

(such as the retail product information, vehicle toll billing information, etc.). Because collisions

are expected when interrogating with RFID, the RFID signal is sent many times, and duplicate

backscatter responses are possible. These are resolved at the application layer, for example, by

ignoring duplicate interrogation responses within a certain time duration.

It is important to note that RFID was not designed to be used for continuous monitoring appli-

cations, especially within the biomedical domain. RFID readers are expensive, have no computation

or storage capabilities, and require external devices to utilize networking features. In real-time mon-

itoring applications, RFID technology is re-purposed so that a single tag is repeatedly interrogated,

and the duplicate backscatter responses are utilized for their signal properties, such as RSSI or sig-

nal phase. Repurposing RFID to track the small changes in signal backscatter properties presents

several technical, regulatory, and human challenges16, which are detailed in Section 2.1. Among

these challenges is the need to separate changes in signal properties over time due to strain-gauge

motion (i.e., respiratory activity) from those changes due to fading and multipathing from other

Chapter 1: Introduction 1.1 Overview and Motivation



5

objects moving in the field and dynamically blocking or reflecting the signal, and from those changes

due to “ambient” motion artifacts from the subject that are unrelated to strain-gauge movement.

This is done with no processing on the wearable device, other than that to provide standard RFID

interrogation responses as described in this Section; all subject state estimation and processing is

performed wirelessly, away from the user, and on the interrogation side.

Figure 1.3: The knitted smart-garment device Bellyband uses an embedded RFID tag and
knit metallic thread antenna to monitor strain-gauge movements such as respiration (left) or a
uterine contraction (right).

Knitted wearable garment devices facilitate ubiquitous monitoring of biometrics: strain-gauge

sensing such as respiratory and uterine monitoring16, non-strain-gauge sensing such as walking or

other muscle movements17, and sub-dermal electrodiagnostics such as heart monitoring12. Embed-

ded RFID-based passive devices represent an Internet-of-Things (IoT) network that should be capa-

ble of telemetry via the interrogator and among legacy monitoring devices. A software framework

is needed to support the physical RFID and IoT infrastructure both efficiently and in compliance

with Health Insurance Portability and Accountability Act (HIPAA) regulations18, and is detailed

in Section 4.2.

A wearable passive garment device avoids the need for a tethered monitoring system, so that

monitoring can be performed while standing or even ambulatory. We envision ubiquitous, unobtru-

sive monitoring platform that allows for the collection of individual baseline biometrics while healthy

without requiring active device deployment; active sensor deployment may only occur when monitor-

ing values are needed, such as when the patient is experiencing an abnormal state. It is known that

human physiological “normal ranges” are subject to individual variation that is not explained by

Chapter 1: Introduction 1.1 Overview and Motivation
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a chronic condition19. For example, individual physiological measures such as respiratory activity,

body surface temperature, and pulse are subject to variance due to age and physical activity and

can be correlated20. Such relationships suggest that wearable monitors can aid in management of

chronic disease, such as Type 1 Diabetes, during periods of physical activity21.

The RFID tag physical backscatter properties perturb as the knitted fabric antenna and smart

garment are stretched in space. The antenna is shaped to be resonant at a frequency within the

900 MHz Ultra High Frequency (UHF) RFID frequency band, and the impedance match attained

with that shape is degraded as the shape is deformed due to body movements. The signal strength,

for example, becomes weaker as the antenna is stretched, and returns to near optimal strength as

the antenna is relaxed. However, the tag itself may move closer to the RFID interrogator as the

wearer inhales, which strengthens the backscatter signal, working against this designed impedance

mismatch. Further, the interrogator frequency changes every 200 milliseconds by federal regulation,

without a corresponding change on the RFID tag and knitted antenna; this change in frequency

further degrades the impedance match between the antenna and a specific frequency within the

band.

Finally, variations in deployment result in variations in physical backscatter properties that

render thresholding approaches ineffective. For example, changes in wearer fit creates an initial

stretch in the antenna that may extend short of or beyond the shape required for optimal impedance

matching with the interrogation signal. Absorption of RF energy by the human body may vary

from body to body and result in a degraded or lack of backscatter response to the interrogator.

Variations within the physical garment can also result in signal variation, including displacement

of metallic threads causing a short of the RF signal with the chip assembly. Changing physical

environmental factors can interact dynamically with the signal, such as a person walking through

the area, or a conductive object in the field. As a result, the signal patterns can vary from wearer

to wearer and band to band, necessitating observation of individual baseline environmental factors.

Exacerbating these issues, commercial RFID interrogation equipment may quantize the physical

backscatter properties returned to the user for processing, aggregating these small perturbations

Chapter 1: Introduction 1.1 Overview and Motivation
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together due to rounding.

Despite these challenges, we focus in this effort on wearer state classification, monitoring, and

prediction using a single RFID interrogator, a single knitted antenna and RFID tag wearable smart

garment device, and a single RFID interrogator antenna. This minimalistic design was chosen

to enable a platform framework that could scale to multiple application domains, such as mobile

monitoring using an interrogator coupled to a mobile device, using features that are available from

commercially available equipment. Single tag classification produces results that can be used as a

baseline for multi-sensor fusion research involving wearable reference tags, i.e., those worn on the

body but away from abdominal movements during respiratory monitoring.

1.2 Thesis Contributions

The main contributions of this thesis are summarized in Figure 1.4, and include a software framework

to securely interface with heterogeneous physical IoT devices (Section 1.2.1), predictive monitoring

“sensors” which provide real-time estimation of subject state from wearable IoT smart garment

devices (Section 1.2.2), and a framework for evaluating the performance of sensor fusion of these

classification and estimation “sensor” algorithms using Expectation Maximization and Gaussian

Mixture Models (Section 1.2.3).

Figure 1.4: Summary and structure of thesis contributions

Chapter 1: Introduction 1.2 Thesis Contributions
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1.2.1 Secure Software Framework for Unobtrusive Monitoring of IoT De-
vices

Accurate estimation of subject biomedical state from wearable strain-gauge smart garment devices

requires a novel sensor fusion approach due to the dynamic noise environment that is present both

on and around the wearer. In order to carry out this sensor fusion, it is necessary to collect the

data in an efficient and secure manner. Many of the physical sensors used in this study utilize

UHF RFID11, whose communication is covered by standard protocols such as the Low Level Reader

Protocol (LLRP)22. However, because interrogation is typically done for instantaneous inventory

management, the physical properties of RFID interrogation such as signal strength and phase angle

are not typically stored for further processing or long-term use. Further, these physical properties

could be considered medical data as they are structured in such a way as to predict biomedical state.

Finally, though most of the physical sensors use RFID technology, others are traditional medical

devices such as a tocodynamometer, whose data must be collected and time-synchronized to RFID

data collected in parallel for comparison study purposes. To enable the efficient collection and secure

storage of data from heterogeneous physical sensors, we created a software framework compatible

with many physical devices and backend database systems, with a consistent communications and

encryption layer for interoperability10;18. This software framework has been used in several RFID-

based application domains for physical layer data collection and physiological classification, including

this effort, movement detection for DVT monitoring, and an RFID-based energy harvesting heart

monitor23. The heart monitoring application detects changes in the read rate of the interrogator

itself as manipulated by the wearable device, so particular consideration to hard-real time constraints

is implemented within the software collection framework, as described in Section 4.3.

1.2.2 Predictive Classification and Estimation of Subject State using Wear-
able Smart Garment Devices

Our IoT monitoring software framework enables classification of biomedical state across several

applications. This study focuses on respiratory and uterine monitoring, but has also supported novel

work in RFID-based heart monitoring23 as well as correlated heart and respiratory monitoring24.

Chapter 1: Introduction 1.2 Thesis Contributions
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Because we are monitoring for anomalies that may lead to adverse medical conditions for the user,

it is not feasible to train traditional classifiers with representative data reflecting all possible user

states. For example, we cannot train a classifier with an example heart stoppage or apnea condition,

and we cannot expect to be able to train on a uterine contraction since this is the condition that the

algorithm seeks to identify as it happens. As a result, classification algorithms must train with a

minimal period of time to facilitate immediate deployment, and must only train with “positive” data

such as a normal heart beat or respiration. We have developed classifiers to accurately discriminate

between biomedical classes such as respiration and apnea in a semi-unsupervised approach16;17, have

estimated biomedical state such as respiratory rate from these classification approaches17, and have

identified anomaly conditions deviating from the short training period that may require attention

and/or retraining.

1.2.3 Software Framework for Real-Time Sensor Fusion of Algorithmic
“Sensors” Measured from Wearable IoT Smart Garment Devices

Dynamic environmental conditions, such as people and objects moving in the space, can cause RF

interference from interrogation to interrogation that is in the same band as the signal itself. Addi-

tionally, subject “ambient” movements, such as walking or torso movements unrelated to respiratory

activity, that are unrelated to the movements being monitored also appear in the same band as the

signal, and create mechanical noise artifacts. A moving interrogator, such as a mobile cell-phone

based interrogator, introduces similar noise artifacts as it moves through space with the RFID tag

itself. These are mitigated by data fusion at the physical layer and at the application layer. For

example, identification and synergy of patterns at the physical layer help inform the artifacts be-

ing sought in monitoring: if the phase and signal strength interoperate somewhat uniquely during

certain activities, this can be leveraged in detection. Additionally, if certain algorithms are more

robust than others under different environmental conditions, this can be leveraged if it is possible

to discriminate between them. We have fused physical RFID properties at the physical layer and

discriminated against analytical approaches in real-time with significant improvements in detection

accuracy25.

Chapter 1: Introduction 1.2 Thesis Contributions
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1.2.4 Publications In-Print, To-Appear, and In-Preparation

This section summarizes publications and awards related to and supported by this effort.
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2. William M. Mongan, Robert Ross, Ilhaan Rasheed, Yuqiao Liu, Khyati Ved, Endla Anday,

Kapil Dandekar, Genevieve Dion, Timothy Kurzweg, and Adam Fontecchio. Data Fusion

of Single-Tag RFID Measurements for Respiratory Rate Monitoring. IEEE Signal

Processing in Medicine and Biology (SPMB) 2017, December, 2017.

3. Shrenik A. Vora, William M. Mongan, Endla K. Anday, Kapil R. Dandekar, Genevieve Dion,

Adam K. Fontecchio, and Timothy P. Kurzweg. On Implementing an Unconventional

Infant Vital Signs Monitor with Passive RFID Tags. IEEE International Conference

on RFID, 2017, May, 2017.

4. William Mongan, Ilhaan Rasheed, Khyati Ved, Shrenik Vora, Kapil Dandekar, Genevieve

Dion, Timothy Kurzweg, and Adam Fontecchio. On the Use of Radio Frequency Identi-

fication for Continuous Biomedical Monitoring. ACM/IEEE International Conference

on Internet-of-Things Design and Implementation (IoTDI) 2017, April, 2017.

5. William M. Mongan, Ilhaan Rasheed, Khyati Ved, Ariana Levitt, Endla Anday, Kapil

Dandekar, Genevieve Dion, Timothy Kurzweg, and Adam Fontecchio. Real-Time Detection

of Apnea via Signal Processing of Time-Series Properties of RFID-Based Smart

Garments. IEEE Signal Processing in Medicine and Biology (SPMB) 2016, December, 2016.

6. William Mongan, Endla Anday, Genevieve Dion, Adam Fontecchio, Tim Kurzweg, Yuqiao

Liu, Owen Montgomery, Ilhaan Rasheed, Cem Sahin, Shrenik Vora, and Kapil Dandekar. A
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Multi-Disciplinary Framework for Continuous Biomedical Monitoring Using Low-

Power Passive RFID-based Wireless Wearable Sensors. Proceedings of the IEEE

Smart Systems Workshop 2016, May, 2016.

7. Shrenik Vora, William Mongan, Kapil Dandekar, Adam Fontecchio, and Tim Kurzweg.

Wireless Heart and Respiration Monitoring for Infants through Passive RFID

Tags. International Conference on Biomedical and Health Informatics (BHI), February, 2016.

8. Damiano Patron, William Mongan, Timothy Kurzweg, Adam Fontecchio, Genevieve Dion,

Endla Anday, and Kapil R. Dandekar. On the Use of Knitted Antennas and Inductively

Coupled RFID Tags for Wearable Applications. IEEE Transactions on Biomedical

Circuits and Systems, January 2016.

9. William Mongan, Kapil R. Dandekar, Genevieve Dion, Timothy Kurzweg, and Adam Fontec-

chio. Statistical Analytics of Wearable Passive RFID-based Biomedical Textile

Monitors for Real-Time State Classification. IEEE Signal Processing in Medicine and

Biology (SPMB) Symposium Poster. Philadelphia, PA. December, 2015.

Publications In-Preparation

1. William M. Mongan, Ilhaan Rasheed, Robert Ross, Kapil R. Dandekar, Genevieve Dion,

Timothy Kurzweg, and Adam K. Fontecchio. Real-Time Detection of Motion-Based

Events Using RFID Tags in Wireless Wearable Garment Devices.

2. Robert Ross, William M. Mongan, Patrick O’Neill, Ilhaan Rasheed, Adam Fontecchio, and

Kapil R. Dandekar. An Adaptively Parameterized Algorithm Estimating Respira-

tory Rate from a Passive RFID Smart Garment.

3. Patrick O’Neill, William M. Mongan, Robert Ross, Ilhaan Rasheed, Kapil R. Dandekar,

and Adam K. Fontecchio. An Adaptive Search Algorithm for Detecting Respiratory

Artifacts Using a Wireless Passive Wearable Device.

4. Austin Gentry, Brent Lee, William M. Mongan, Owen Montgomery, and Kapil Dandekar.
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Activity Segmentation Using Wearable Sensors for Deep Vein Thrombosis Condi-

tion Detection.

5. Khyati Ved, Ilhaan Rasheed, William Mongan, Genevieve Dion, Timothy Kurzweg, Adam

Fontecchio, and Kapil R. Dandekar. Ambient Motion Detection Using RFID-Based

Smart Garments.

Grants and Funding Support Awarded

1. Adam K. Fontecchio and William M. Mongan, co-Principal Investigators. Analytics on

Real-Time Biometrics from Passive Wearable Smart-Garments; 2017-2018, Commonwealth

Universal Research Enhancement (CURE) Formula Grant (SAP117558-014), $75,000.

2. William M. Mongan and Adam K. Fontecchio. Drexel University Co-op Funding Award

supplement to support undergraduate experiential learning in research; 2017-2018, $7,250.

1.3 Thesis Organization

In this thesis, we detail our overview, background and motivation in Part I, in which relevant back-

ground about the technology utilized is detailed in Chapter 2. Related efforts are outlined in Chap-

ter 3. In Part II, we detail our technical approach, including physical layer modeling (Chapter 4),

feature extraction (Chapter 5), training, classification, and re-training (Chapter 6), state estimation

(Chapter 7), physical layer sensor fusion (Chapter 8), multi-sensor estimate fusion (Chapter 9), and

prediction of future biomedical state including interbreath interval (Chapter 10). In Part III, we

detail our laboratory experimentation and human clinical trials (Chapter 11). Finally, we summarize

results and conclude in Part IV in Chapters 12 and 13, respectively.

Chapter 1: Introduction 1.3 Thesis Organization
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Chapter 2: Background

Wearable smart devices have become ubiquitous, with powered devices capable of providing heads-

up-display information and collecting real-time biometric information from its users. Typically,

these devices require a powered component to be worn and maintained, such as a battery-powered

sensor26, Bluetooth communications device27;28, or glasses29;30. Pregnancy and infant monitoring

devices may be uncomfortable to the mother or baby and are subject to signal loss if the patient

changes position or becomes mobile because the device must remain tethered to the patient by a belt

and plugged into a wall for power31. The unobtrusive Bellyband device is knitted into the fabric

using conductive thread to which an RFID chip within the fabric is inductively coupled. This chip

and antenna is interrogated by ambient sensors similar to that found in an EZ-Pass tollbooth, with-

out requiring a power source or powered sensor on the garment. However, whereas tag interrogation

is used traditionally for inventory or account management (i.e., the tollbooth scenario), our work

utilizes the RSSI returned from each RFID interrogation to determine different types of motion in

the inductively-coupled chip and knit antenna structure as it is moved by the wearer. Movement

such as a uterine contraction or an infant rolling in a crib is detected wirelessly via differences in

power level perceived from the RSSI from the interrogation signal sent to the garment, as well as

variable inductive coupling between the antenna and MAGICSTRAP RFID LMXS31ACNA-011

chip32 or Monza X Dura chip33. The chip is interrogated by standard RFID equipment available

commercially off-the-shelf, including the Impinj R420 interrogator34 and RFMAX S9028PCLJ an-

tenna35. Stretching the garment due to motion causes deformations to the knitted antenna, yielding

these changes in RSSI without requiring a cumbersome transducer like the current gold standard

tocodynamometer for uterine and fetal monitoring.

RFID sensors embedded within biomedical smart textiles can enable real-time, unobtrusive,

passive patient monitoring in a number of settings, such as passive monitoring of uterine contractions

in a pregnant woman, or respiration for apnea detection in an infant. The goal of this work is to
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provide a passive, wireless solution for collecting medical feedback from these heterogeneous sensors,

utilizing backscatter readings from RFID tags integrated with knitted antennas and positioned on

wearable fabrics to determine distention and, from this, metrics on the rate or intensity of breathing,

contractions, or other biomedical information. Several elements of this effort, including real-time

capture, post-processing, and big data analytics of RFID data, rely on a software module to capture

and store this data in real time from various hardware devices. However, this software module is

dependent upon the type of chip being sensed and the type of interrogator being used. Moreover,

it is necessary to compare this data to that collected by legacy medical equipment in a clinical

trial setting in order to measure performance of and determine viability of the system. All of this

necessitates a software framework for collecting data in real-time from heterogeneous medical devices

and RFID sensors simultaneously, providing a consistent data representation for each.

The workflow for RFID interrogation is summarized in Figure 2.1, and the system architecture

to implement this workflow is described in Figure 2.2.

Interrogate RFID tag

Parse Result Returned to Obtain Timestamp, EPC96 Tag, and RSSI Value

Store Result, Grouped by EPC96 Tag and Sorted by Timestamp

Plot on Real-Time Animated Graph

Post-Process and Plot Overall Data

Figure 2.1: RFID Capture Workflow

RFID Interrogator

RFID Chip on Garment Device Data Collector

Data Filtering Modules Data Presentation Modules

Figure 2.2: General system architecture for RFID interrogation
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The result of this workflow is three-fold:

• A real-time animated plot of data collected in a fashion similar to a traditional Tocodynamome-

ter

• A post-processed plot of data collected

• Analytics and interpolation of data collected

Each component of this workflow presents challenges. The RFID interrogator data must be

obtained from specifications or reverse-engineered to determine its format and protocol. Different

interrogators may communicate with different levels of compliance to the standard LLRP protocol, or

they may use their own proprietary formats. Critical to these efforts is real-time software-based signal

processing algorithms capable of filtering the live data to detect events such as a uterine contraction,

heartbeat, or infant movement. We addressed several challenges in the workflow required to collect

and present this data from the RFID interrogator in a manner consistent with “gold standard”

readouts. For example, it was necessary to monitor the RFID interrogator using network packet

analyzers to determine the protocol used22, and construct an algorithm compatible with the device,

modifying and adapting a library implementation of that protocol36 for our use. Similar work was

required to interface with the tocodynamometer using a legacy interface used to communicate with

traditional hospital monitor devices. Additional software was written to communicate with portable

RFID interrogators over a Bluetooth connection. This activity is significant because it will enable

the presentation of multiple real-time sensor data collected from heterogeneous sensors over various

interfaces, including a live web service interface, or Hadoop distributed data cluster. This enables

data fusion and signal processing in order to determine if medical events are taking place or are

about to take place, or to present a visualization of the movements sensed. Additionally, this data

must be animated in a real-time display for medical use, which means that real-time processing

must be limited or done efficiently to allow sufficient time for rendering. Further, the data could

be collected from several RFID tags, enabling a contour map of the body depending on the tags’

placement on the wearable fabric.

Chapter 2: Background
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Each solution provided here presents further opportunities for investigation. The EPC tags, when

interrogated, yield a radiated signal that is interpreted to derive medical feedback. This backscatter

may constitute personal medical information protected under HIPAA guidelines. Further, the RFID

interrogator will likely itself be a wireless and portable solution, enabling full mobility of the mother

or baby; however, these signals must be processed to remove these movements, as they will distort

the observed RSSI value. In addition, the module that communicates with the RFID interrogator

will need to be migrated to a wireless network, Bluetooth, or other wireless protocol, requiring a

modular software design that can communicate securely. Each consideration is addressed in this

work.

This multifaceted work includes efforts to design an RFID-enabled antenna that interacts with

smart garments made of heterogeneous materials using inductive coupling. Initial benchmark testing

of these garments and antenna designs utilized the LLRP Commander software37 that enables con-

figuration of RFID interrogators for data collection. This data is then exported for post-processing.

For more rapid bench testing, we sought a solution that enabled automatic configuration of the

RFID interrogator, real-time visualization and processing of the data, and the ability to collect

data from multiple interrogators or other devices simultaneously in a manner compatible with the

visualization and processing module. This research has enabled signal capture at a range of several

feet, and is conducive to mounting interrogation equipment on a ceiling or wall. This, in turn, has

enabled research and development in wireless, passive uterine monitoring, fetal heart monitoring,

and infant apnea detection, via an RFID-based framework for remote wireless monitoring. This

software solution to support simultaneous, real-time collection and processing of RFID-based sensor

data is the focus and contribution of this work.

With this software, we were able to design an experimental protocol. Our RFID-based sensors

enable several medical device applications, such as uterine monitoring and infant respiration. To

simulate these environments for clinical trials, we use the Laerdal SimBaby38 as a simulator for apnea

detection and a pregnant mannequin as a simulator for uterine monitoring, each containing an air

bladder, and each wearing a tocodynamometer and an RFID bellyband. The baby is programmed

Chapter 2: Background
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to execute several respiratory scenarios for detection purposes: for example, breathing at a constant

rate for 3 minutes and then stopping. The bellyband and tocodynamometer are each monitored

using a thread spawned by the software, and they are plotted together with optional data filtering

techniques. The mannequin is actuated using a peristaltic pump that fills the bladder with either

water or air to a predefined and programmable pressure or duration. These tests enable two-

fold analysis: first, statistical analysis of the data enables detection of “events” (i.e., respiration

or a uterine contraction) that we can compare quantitatively to existing medical devices; second,

comparisons between RFID chips, antenna designs, and fabric designs, by calculating the range and

angle at which reliable measurements can be taken from the SimBaby or mannequin.

2.1 Repurposing RFID at the Physical Layer

Even in idealized environments with little mechanical interference and wideband interrogation, RFID

backscatter follows the direct path between tag and interrogator relatively rarely39, instead following

multipath propagation about the environment. The singulation protocol for Class 1, Generation 2

(C1G2) UHF RFID40 provides for a state machine implementation on each RFID tag and a random

number generator that serves as a Slotted ALOHA protocol for collision avoidance. Tags alternate

their backscatter responses to allow many or all tags in the field to respond before any one tag

responds a second time. Tags “choose” amongst themselves in each round by counting down from

a random number prior to responding, repeating when a collision occurs. In this way, a single

tag is eventually selected for response. As a result, multipath propagation is of little consequence

for inventory management because the EPC tag is eventually read from a single tag regardless of

the physical path traveled by the signal itself. The physical properties of successive interrogations,

however, are likely to be different. The interrogation frequency and signal paths between interrogator

and tag both vary over time: the frequency usually (but not necessarily) follows a deterministic

rotating pattern in order to satisfy regulatory requirements in the United States41, and the signal

path can be random and unpredictable as the physical environment surrounding the RFID tag and

interrogator may also change over time. Neither a fully stochastic nor a fully deterministic model

is sufficient for accurate RFID-based state estimation39. Therefore, we developed a hybrid model
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that uses statistical multisensor fusion to inspect both deterministic models as well as probabilistic

models of the physical properties of RFID backscatter response, described in Part II. Multipath

effects will affect all RFID interrogations in the 900MHz band, as the signal waves are coherent for

approximately 600 meters per Equation 2.1 (where c is the speed of light in a a vacuum, assumed to

be 3×108 meters/second, B is the signal bandwidth, assumed to be 500 kHz, and n is the refractive

index, assumed to be ≈ 1.00 for air at standard temperature and pressure). With these parameters,

the coherence distance L = 599.83 meters.

L =
c

nB
(2.1)

The Impinj Speedway R420 communicates data received over each of its four antennae via a

wired ethernet connection. The Wireshark packet capture (pcap) utility confirmed that the data

being sent by the Impinj unit is based on the LLRP standard22. The LLRP standard is extensive,

but of particular interest are the trace diagrams indicating opening an RFID session with the Impinj

unit (Figure 2.3), reading a tag report from the Impinj unit (Figure 2.4), and closing an RFID

session with the Impinj unit (Figure 2.5). The data flow from the Impinj is shown in Figure 2.6,

with each message type described in detail (including how to parse the data) as provided by the

LLRP protocol specifications.

According to the LLRP Specification22, each LLRP message has a common format, shown in

Figure 2.7:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved Version Number Message Type

Message Length

Message Length

Message ID

Message · · ·

Figure 2.7: Bit-level description of an LLRP protocol message

Based on this LLRP message format, messages can be formulated, sent, read, and parsed based on
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Figure 2.3: Opening an LLRP Session with the Impinj Speedway R420 interrogator, as cap-
tured by Wireshark. Notice the raw binary data to be parsed at the bottom of the figure, parsed
by Wireshark for analysis.

Figure 2.4: Capturing a set of Reader Operation (RO) RFID tag messages from the Impinj
Speedway R420 interrogator

Chapter 2: Background 2.1 Repurposing RFID at the Physical Layer
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Figure 2.5: Closing an LLRP Session with the Impinj Speedway R420 interrogator

this general format, for an LLRP-compliant device. For example, the GET READER CAPABILITIES

message has a message type of 1, and the GET READER CAPABILITIES RESPONSE message

type is 11. The parameters for each message type (i.e., the message value) are documented in

the protocol specification, and the most relevant of these messages will be illustrated here: the

RO ACCESS REPORT message. This message contains the EPC96, timestamp, and RSSI value of

the tags. Because TCP (the transport protocol over which LLRP is run) buffers data, these messages

are queued for efficiency and sent in clusters. The timestamp that the message is received cannot

be used to infer the time that the RFID tag was read; instead, the timestamp for each message is

embedded for each RFID tag read being sent, and should be used instead to ensure accurate timing

and spacing calculations during post-processing.

In the RO ACCESS REPORT message (message type 61), the number of tags being sent in each

cluster is inferred from the message length header. Each tag report data point in the message value

section consists of the fields for parsing in a loop (until the total message length has been reached)

as shown in Figure 2.8:
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Get Reader Capabilities

Get Reader Capabilities Response

Delete ROSpec

Delete ROSpec Response

Add ROSpec

Add ROSpec Response

Enable ROSpec

Enable ROSpec Response

Start ROSpec

Start ROSpec Response

RO Access Report

Stop ROSpec

Stop ROSpec Response

Disable ROSpec

Disable ROSpec Response

Delete ROSpec

Delete ROSpec Response

Close Connection

Close Connection Response

Figure 2.6: Data Flow Inferred for the Impinj Speedway R420 interrogator
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Sub-message type (The Tag Report Data sub-message type is 240)

Length of this sub-message (this is a portion of the overall message length)

EPC96 Parameter (a 96-bit code indicating the EPC tag of the RFID chip being read)

Antenna ID (the antenna that read the tag, in case there is more than one antenna active)

Peak RSSI

First Seen Timestamp (An absolute timestamp given in nanoseconds that the tag was read)

Figure 2.8: Bit-level description of an LLRP protocol sub-message embedded within the LLRP
message format in Figure 2.7

Each of these parameters can arrive in any order within the message; for parsing, each parameter

is given an ID code. For example, the EPC96 parameter is code 13, and the Peak RSSI is code 6.

These are all defined by the protocol specification. Thus, if a message is read with a type code of

61, it is an RO ACCESS REPORT message, in which a series of RFID interrogations can be found.

For each interrogation, if a parameter of type 6 is read, the value that follows is the RSSI.

This data is read in real-time via a thread that allows the module to execute in the background

while data processing and analytics are performed simultaneously. Here, we discuss the thread

module that performs this protocol implementation. The LLRPyC36 module was used as a starting

point to read and parse these messages. They are returned in real-time via a callback function, and

this function was implemented to add these tags to a data structure being simultaneously processed

by a thread for animating the plot in real-time.

However, there were several incompatibilities between the LLRPyC module and the Impinj LLRP

interrogator, perhaps because the protocol implementation is incomplete, or because the Impinj is

not fully LLRP-compliant. For example, the Impinj sometimes sends data that is extraneous to the

LLRP protocol or supplemental to that expected by the LLRPyC module. At other times, empty

messages were returned by the Impinj, which could be interpreted as an expected RESPONSE

message, placing the Impinj and the protocol client implementation fatally out-of-sync. Because the

LLRPyC protocol included numerous checks of strict compliance, these incompatibilities occurred

frequently and required adjustment to the protocol implementation module. Best practice dictates

that one’s software modules be lenient about their inputs (that is, forgiving to data received that
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is not in strict compliance with a protocol specification, if possible), but strict with their outputs

(that is, only to output data in strict compliance with its promised interface and specifications).

One naive solution to this problem would be to simply ignore the extraneous message information.

However, this is not feasible, because that data would later be mistaken as part of the next message.

Although the protocol data units described in this Section are given friendly textual names like

GET READER CAPABILITIES, it is important to remember that the actual data transmitted

are the numerical encodings that represent each message type. Because of this, it is important to

determine precisely where a message begins and ends. Otherwise, transmitting the length of the

message would not be helpful, because the protocol client would not be able to determine where in the

message to parse that length, as a result of not being able to determine where the message began. The

LLRPyC module did not parse the individual parameters provided by the RO ACCESS REPORT,

so this needed to be implemented in accordance with the protocol specifications described in this

Section. These “extra,” un-parsed parameters are likely the reason for the protocol client failing on

the incoming messages. The protocol client was modified to read this data, parse those parameters

necessary for this study, and store the rest without further processing. Once this was completed,

the LLRP protocol client module could be used to collect data in real-time for processing. The

following sections describe in detail how this module was used to perform real-time processing, post-

processing, and analytics on the RFID data collected. We define real-time processing as the ability

to collect and store data at a higher rate than the interrogation read rate, and the ability to process

the data within a specified time constraint (i.e., respiratory rate detection over a 6 second window).

2.1.1 Integrating Analysis Modules with the Data Collection Framework

We construct an algorithm compatible with the device communicating over the LLRP protocol,

modifying and adapting a library implementation of that protocol36 for our use. Similar work was

required to interface with the tocodynamometer using a legacy interface used to communicate with

traditional hospital monitor devices. Additional software was written to communicate with portable

RFID interrogators over a Bluetooth connection to enable communication with wireless interrogators.

The data are time-correlated so that events can be compared between devices. Further, the data
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could be collected from several RFID tags, enabling a contour map of the body depending on the

tags’ placement on the wearable fabric.

This data is read in real-time via a thread that allows the module to execute in the background

while data processing and analytics are performed simultaneously. The LLRPyC36 module was

used as a starting point to read and parse these messages. They are returned in real-time via a

callback function, and this function was implemented to add these tags to a data structure being

simultaneously processed by a thread for animating the plot in real-time.

There were several incompatibilities between the LLRPyC module and the Impinj interrogator,

perhaps because the protocol implementation is incomplete, or because the Impinj is not fully LLRP-

compliant. For example, the Impinj sometimes sends data that is extraneous to the LLRP protocol

or supplemental to that expected by the LLRPyC module.

To facilitate interrogation of multiple tags simultaneously (for example, to create a contour of

body movements), the software was modified to also parse and store the EPC96 tag from each read

event message. The dictionary was grouped by EPC96 tag and sorted by timestamp before plotting

on the animation and graph. This resulted in multiple sets of coordinates to be plotted separately.

The animation thread plots each set of coordinates separately, and new tag events are associated with

their existing set of coordinates. If a new RFID chip is introduced during the animation sequence,

it is dynamically added to the list of known RFID tags, and a new set of coordinates are plotted

alongside the existing ones in real-time. For readability, each set of RFID EPC tag data is plotted

in a different color, and a legend is provided on the graph to indicate which line corresponded to

which EPC tag ID. We are able to detect, read and process four RFID chips simultaneously (more

is likely feasible at the expense of the interrogation sample rate, but our investigation has focused

on single-tag deployments).
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Chapter 3: Related Work

In this chapter, we summarize the state of the art in four synergistic and related areas to this effort.

We outline existing work in smart wearable biomedical monitoring devices in Section 3.1. RFID-

based tracking and monitoring systems are surveyed in Section 3.2. Data collection and processing

systems for wearable sensor monitors are described in Section 3.3, and, finally, we survey Machine

Learning approaches in RF wearable systems in Section 3.4. These efforts provide a framework for

synergistic intelligent systems in heterogeneous IoT wearable biomedical systems; we build upon

these efforts by providing for unsupervised models for real-time learning and classification of wearer

state using knitted antennas for RFID-based applications.

3.1 Survey of Wireless Wearable Monitoring Devices

Conductive materials have a variety of uses as wearable textile devices, including data channels

and sensors, wearable antennas, as well as in protective clothing materials42. Flexible antenna

designs enable embedding wearable sensors about the human body; Xu, et al, do this by embedding

the flexible antenna upon a felt strap suitable for integration into a wearable garment43. Even

passive sensor smart garments may require a portable processing unit or power source, but have

the potential to sense the environment and user state as well as inform active sensors that can

actuate directly on the human body44. An integrated patch antenna is subject to strain forces

that influence its S11 characteristics45; the wearable sensor in this study is a knitted antenna using

conductive thread deployed about a passive RFID tag embedded into the garment in an unobtrusive

manner that requires no external power source aside from the interrogation signal itself11;46. This

knitted antenna takes advantage of the changes in resonant frequency due to strain forces to create

a smart garment device that can monitor stretching as well as coarse movement activity.

Other wireless sensors are attached to the user during typical use, but not necessarily integrated

into an unobtrusive day-to-day garment for use without awareness of its deployment. A tracheal
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sensor attached with medical tape can be used to detect snoring spells that could lead to apnea

conditions47, using acoustic analysis with 89% accuracy.

It has been shown that wireless antennas embedded into garments can be used to monitor chest

distension due to respiratory activity using a prototype antenna connected to a network analyzer

for monitoring the frequency shift of the antenna due to changes in dielectric properties of the body

during respiration48. These frequency shifts can range from 4-15 MHz to 120 MHz depending on

the depth of inspiration. Our sensor must iterate over frequencies in the 900 MHz band in order to

utilize commercially available monitoring equipment, so we use signal strength and other physical

RF properties; as a result, we must filter noise artifacts due to the antenna proximity to the human

body. Wireless reflections using 802.11 Wi-Fi protocols can also be utilized for subject monitoring

using the WiBreathe system, if a transmitter and receiver pair are available in the environment and

a single subject is being monitored49, and for up to 7 subjects in the same room with a high degree of

accuracy using the MUSIC algorithm on a set of subcarrier gains observed on the Wi-Fi channel50,

and for multiple subjects as long as they remain 1.5 meters apart51. However, like WiBreathe, we

will also employ both discrete and spectral analysis for respiratory rate estimation, and fuse those

signals into a unified estimate.

Tarassenko and Mason52;53 use active tags such as ECG and photoplethysmography (PPG) to

infer respiratory activity using autoregressive (AR) modeling. Our effort seeks to use a single passive

RFID sensor to monitor strain movements such as respiration; the wireless signal is too noisy to use

AR modeling directly, and so a stochastic model is employed instead for this purpose.

3.2 Survey of RFID-Based Subject Monitoring

Common physical features reported from commercial off-the-shelf RFID equipment include RSSI,

phase angle, Doppler shift, and received timestamp. Although these features are sometimes quan-

tized, and are subject to perturbations due to multipath fading and shadowing as the reflected

signal traverses an irregular and dynamic environment, they can be monitored over time to estimate

subject state. Often, this is done by fusing features collected from multiple interrogators or from

multiple tags placed in the environment. Doppler and RSSI have been used to identify gross hu-
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man movements such as walking around a room with an RFID tag54, and are used to detect those

movements in a device-free environment in which the tags are deployed in the environment, and

not on the person54;55. To overcome the interrogator noise inherent in the Doppler measurement, a

fixed RFID interrogation frequency was used54; however, this approach is not feasible in the United

States under Federal Communications Commission (FCC) regulations41. Although these limitations

do not exist elsewhere in the world, and can be overcome with custom interrogation equipment and

protocols56–59 or other physical layer infrastructure such as Zigbee60 or microcontroller/Software

Defined Radio (SDR)61;62, we restricted ourselves in this effort to minimal commercially available

equipment. Shadowing due to human movements between the tag and interrogator were detected

by observing changes in the read rate54. Observing changes in tag read rate across multiple tags is a

feasible feature in a device-free application in which the tags are deployed to the environment itself

because their configuration is likely to be static; in our on-human single-tag application, the read-

rate is not likely to be constant due to dynamic multipath fading artifacts as well as the presence of

additional tags entering and leaving the field. Further, we have chosen a non-device-free deployment

of a tag about the human body to facilitate rapid deployment in any environment, rather than re-

stricting ourselves to a fixed room or building; additionally, we seek to analyze the fine strain gauge

movements of the knitted antenna itself rather than (or in addition to) the coarse movements of the

wearer.

IDSense63 is a user activity tracker that classifies behaviors (interactions with objects in the

environment) using RFID signal strength, phase, and read rate. Activities were trained on features

of RSSI, Doppler, and Phase, and then classified into five activities using a Support Vector Machine.

This effort requires tagging all the objects in question, and a supervised training period, but were

able to classify between 68% and 98% accuracy. A similar system uses an array of passive RFID tags

and the root mean square (RMS) of phase differences among them to classify handwriting gestures

in the air64. The system is trained on feature thresholds to classify a particular handwriting gesture.

Related systems for customer shopping behavior analysis use phase difference to determine if a tagged

item was moved from a shelf to a shopping cart65, and use RSSI and Doppler window probability
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distribution changes to track tagged items and customer interactions55. Phase and Doppler-based

tag velocity is a useful feature for knitted antenna strain sensing, even though coarse movements are

intermixed with this signal. Bhattacharyya, et al, use a similar RFID physical model to create an

RFID strain sensor using a controllable frequency sweep66. Multipath artifacts present as the strain

sensor is stretched of 1.5 dBm to up to 3 dBM66, but these backscatter artifacts are left as future

work. We do not enjoy frequency-controlled interrogation; however, we do use a stochastic model

to mitigate multipath artifacts. Volk, et al, use High Frequency (HF) RFID to monitor vital signs

in rodents using an implanted RFID tag67. In our work, we utilize an external tag knitted via an

unobtrusive knitted antenna, and we chose UHF RFID for its added read range and read rate over

HF68.

When multiple interrogators and/or tags are deployed in the environment, coarse-grained motion

artifact tracking is facilitated55;69 using kernel-based methods such as a Support Vector Machine

(SVM)69–711 or multi-layer perceptrons such as Artificial Neural Networks (ANN)73;74. This is

often accomplished by deploying reference interrogators or tags in the environment at known lo-

cations75 and using differential RSSI measurements76–79, differential Doppler shift analysis80, dif-

ferential phase/Angle of Arrival (AoA) analysis81–83. Specifically, NightCare75 uses tags placed in

the environment near the user to infer movement or presence in the room for sleep patterns, sleep

apnea, and bedsores, but not real-time respiratory measurements such as respiratory rate. Fixed

environmental configurations are preferable when performing RSSI-based monitoring, because RSSI

is subject to variation due to the reflective properties of different materials that may be present in

the environment84, ambient environmental temperature85, as well as the orientation of the tags86.

If the antenna is fixed, changes in phase angle can be used to infer the distance between the tag

and antenna; again, multiple interrogators and tags are typically deployed to resolve the ambiguity

of phase angle changes beyond [−π, π)87, which occur at distances beyond c
2f ≈ 16cm88 for inter-

rogation frequency f and speed of light in a vacuum constant c. We do not enjoy a broad sensor

network to inspect, nor do we wish to train on a known environmental configuration such as sen-

1SVM-based localization has also been enabled by classifying RSSI from Wi-Fi signals72.
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sor placement; additionally, we seek to limit providing supervised training samples to our learning

algorithms. Nevertheless, we employ kernel-based methods including SVM to separate data. In

an SVM, each training sample is used to additively perturb a perceptron separation function. We

explore alternative semi-supervised training to enable the separating capabilities of the SVM within

these constraints in Sections 6 and 6.6.

3.3 Survey of Machine Intelligence and Data Collection Systems for Wear-
able Sensor Monitors

Classification problems typically involve kernel-based separation69 and hypothesis testing89. Seis-

mic activity was classified using a matched filter89, in which a reference signal is compared using

hypothesis testing to the input signal. Although we will perform maximum likelihood hypothesis

testing for classification, matched filtering was a challenge in this application because of the vari-

ability in the signal presented during human activity. For example, a brief decoupling of the knitted

antenna from the tag due to a large stretch or short from a piece of metallic thread causes the

sinusoidal stretching pattern to appear as multiple rapid peaks. A low-pass filter removes many of

these artifacts, but sacrifices signal amplitude which would aid in classification by a matched filter.

In addition to monitoring physical sensors for biomedical feedback, it is necessary to communicate

and present this information in a manner useful to patients and care providers. Telemedicine refers

to the communication of biomedical feedback and medical records between and among providers

and patients for the purpose of health maintenance. In this effort (see Section 4.2), we develop data

collection, visualization, and integration modules conducive for the remote monitoring of biomedical

feedback using wearable sensor devices as well as traditional medical monitors. Telemedicine systems

include integration of body sensor networks and real-time communications to a hospital setting90.

Home use of reserved telemedicine frequency bands is restricted by FCC regulations90 due to the

risk of RF interference from home appliances; however, we use the unlicensed 900 MHz band for

RFID-based sensors which, despite the risk of interference artifacts, are conducive for home use.

eCloudRFID91 is a data collection and presentation framework from RFID sensor networks to

interface with external application layer components. Our framework is focused on bridging the

Chapter 3: Related Work 3.3 Survey of Intelligent Systems for Wearables



30

physical layers of heterogeneous sensors, including but not limited to RFID devices, and storing

them for processing in a HIPAA-compliant manner.

3.4 Survey of Machine Learning Approaches for RF-Based Monitoring

As we discuss in Chapter 5, it is necessary to aggregate the physical properties of RF backscat-

ter data into higher order features that can be baselined, compared, or modeled for wearer state

classification. Some features considered in the literature using RF properties include the number

of frequencies above a given power magnitude threshold, the mean and standard deviation of the

power spectrum, the minimum or maximum power observed in the spectrum, and the mean or stan-

dard deviation of the underlying signal in the time domain over a given window duration92. The

features are aggregated into a reduced dimension feature space using PCA, and then clustered using

an unsupervised method such as k-means clustering to identify one or more states for each data

point in the window92. Although our underlying signal suffers from noise artifacts and quantization

that yields low separability for fully unsupervised classification, and our window size must be kept

short to maintain real-time classification performance for biological applications, we will augment

classic classification algorithms (see Chapter 6) to allow for unsupervised classification of passive

RFID backscatter properties using aggregate features including these.

Many signal processing algorithms are deployed to denoise environmental artifacts present in RF

signals, which can enable a signal better characterized by the mechanical movements introduced

by the wearer and monitored for physiological state classification. For example, a reference tone

composed with a signal can be used to mitigate jitter effects, introduced by interrogator instability

in the sampling clock or analog-to-digital converter93, in the received signal by measuring the phase

noise present in the reference frequency band94. Although such a reference signal cannot be injected

with commercial off-the-shelf RFID interrogation equipment, such a method could be integrated into

an SDR custom implementation of the RFID protocol for baseline experimentation against existing

RFID equipment.

Other RF machine application domains include classifying the expected feature ranges for an

interrogator for security purposes95, to determine whether the system is communicating with a
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genuine interrogator within the sensor network. The classification algorithms are similar to our

approach, but we are classifying using a non-fixed RFID tag as well as a flexible knitted antenna

whose shape and reflective properties change as the wearer interacts with it. We are not able

to cluster features into known classes, and must therefore utilize temporally evolving features for

classification. In addition, we must dynamically and synthetically generate training data for the

classifier, since it is infeasible to induce biological anomalies for the purposes of training a monitor

intended to detect or mitigate those anomalies.

Additionally, deep learning models such as ANN and Convolutional Neural Networks (CNN) are

used to automatically classify data including RF properties. Although ANN is a powerful structure

that adaptively learns a model from sample data and is robust to environmental variations such as

those commonly seen in our application domain, one disadvantage of ANN is that the underlying

model generated by the ANN is not directly tied to physical phenomena being observed by the

data features. It is challenging to quantify the replicability of ANN performance in a physiological

domain since a different model can be generated for every deployment instance. Still, classification

using ANN and deep learning models has been used with RF data with success96, but the ANN

may train on the noise in a low SNR environment such as our passive RFID application domain.

We utilize ANN in limited applications in which dynamic environmental training is beneficial, but

the underlying model can be related to the features in a replicable manner, such as instantaneous

ambient movement detection (see Section 6.5).
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Chapter 4: Modeling of RFID-based Biofeedback

By FCC Part 15 regulations in the United States, UHF RFID in the 900 MHz band must iterate

between each of 50 channelized frequencies between 902 and 928 MHz in increments of 500 kHz41.

This is done to prevent collisions and unwanted interference in the band which is shared amongst

unlicensed uses. Generally, interrogators must change frequencies every 200 milliseconds. Unfortu-

nately, the physical properties of RFID backscatter response such as signal strength and phase angle

are affected by the interrogation frequency, because the knit antenna is resonant at a particular fre-

quency within the band. Stretching the antenna changes this resonant frequency, which changes the

signal backscatter properties, but changing the interrogation frequency also changes these properties.

To reduce perturbations due to signal strength and phase, the physical model equations incorporate

the interrogation frequency for the RSSI (see the Friis Transmission Formula in Equation 4.197) and

the phase (see Equation 4.298), where:

• PRx,reader is the calculated power received at the interrogator given a constant environment,

• PTx,reader is the interrogator transmit power (configured to be 1 Watt),

• Greader is the reader gain (assumed to be constant),

• Gtag is the tag gain (which can change over time with the shape of the knit antenna),

• λ is the interrogation wavelength ( 1
f , given an interrogation frequency f),

• r is the interrogation radius (which can change as the subject moves in space with the tag),

• R is the return loss over the interrogation path,

• v is the tag velocity,

• c is the speed of light in a vacuum,
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• fm is the Doppler shift, or change in phase angle, observed in two successive tag interrogations,

and

• α is the interrogation angle (which can change over time as the tag moves in space).

PRx,reader = PTx,reader ×G2
reader ×G2

tag ×
( λ

4πr

)4

×R (4.1)

v =
c× fm

2f × cos(α)
(4.2)

We observe that r, Gtag, R, v, and α are dependent upon wearer configuration and are unknown

to us. The rest, however, can be configured or remain constant during use. Unfortunately, changes in

individual terms are independent of changes in other terms, in that they can be triggered by different

types of wearer changes in configuration. For example, r varies with the distance to the interrogator,

but Gtag varies as the knit antenna is stretched. Using multiple RFID tags including a reference tag

on a relatively stationary part of the body, these terms can be isolated; however, it is assumed for this

effort that these inter-relationships remain unknown and must be observed stochastically. Therefore,

we group these varying terms together to form corresponding measurements in Equations 4.3 and 4.4.

ζ̂ =
r4

G2
tag ×R

=
PTx,reader ×G2

reader

PRx,reader
×
( λ

4π

)4

(4.3)

η = v × cos(α) =
c× fm

2f
(4.4)

For phase measurement, the Impinj R420 reports both the phase angle and instantaneous Doppler

shift. This is advantageous because computing the Doppler from the phase (denoted by φ) requires

computing the change in successive phase measurements, which assumes that the same antenna and

interrogation frequency were used between those interrogations. Phase-based velocity estimation

(shown in Equation 4.5) computes a more accurate velocity estimate55;99 since it incorporates the

time (tx) between those successive interrogations, whereas the reported Doppler shift is subject
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to noise artifacts at the interrogator54. However, we use the Doppler measurement reported by

Impinj to avoid the restrictions imposed by requiring a constant interrogation frequency, tag, and

interrogator antenna, since the interrogation frequency changes at a rate of 5 Hz per FCC regulations

described in this Section. Per Impinj recommendations98, we choose a slower interrogation rate to

increase Doppler shift resolution and, in turn, velocity estimation accuracy18.

v =
c× (φt2 − φt1)

f × (t2 − t1)
(4.5)

Multiple antennas allow for Direction of Arrival analysis via phase difference100, but we sought to

minimize infrastructure for a wearable device that could then be scaled to multi-tag and interrogator

environments.

4.1 Signal Model

RFID received backscatter power and “tag velocity” are, respectively, calculated via Equations 4.1

and 4.2. It is assumed that each measurement is subject to additive 0-mean stochastic noise term

ε(t), resulting from quantization or measurement observation error. Additionally, the backscatter

power measured by ζ̂ is subject to stochastic multipath fading. This fading term can be modeled with

a Rician distribution (or, more generally, a Rayleigh) if the variance of the multipath is known101.

However, we assume that the tag will be worn by the user right away, so that measurement of the

properties such as the phase shift of the backscattered signal is undesirable; these measurements are

likely to change upon use as the wearer moves about in the space. Additionally, some commercial

RFID interrogators such as the Impinj R420, used in this study, quantize the RSSI component of

ζ̂ such that the amplitude and variance between inferred paths is likely to be observed as ±1. Be-

cause the channel properties change with the shape of the knitted antenna, the distance between

the tag and the interrogator, as well as due to multipath fading, all of which is quantized by the

interrogator, we cannot reliably classify each data point into a backscatter path a priori. When

the properties of the multipath environment are known, such as might be the case in a fixed envi-

ronmental configuration, the RSSI properties from each multipath propagation can be modeled102.
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Additionally, fluctuations in RSSI can be modeled with respect to the distance between the tag and

interrogator as well as the distance to the groundplane103. A log-normal distribution has been used

when the environmental configuration characteristics can be measured a priori to estimate the path

loss exponent104; however, because we use a dynamic environment in which the tag moves with the

wearer, we use other stochastic feature modeling approaches such as a Markov Switching Model,

Hidden Markov Model, and Markov Chain Monte Carlo, to classify the state of the channel in real

time.

The tag gain components Gtag and Greader are elaborated in Equation 4.6, where A is the

effective antenna aperture of the interrogator or the tag due to the Friis Transmission Formula:

G = 4πAλ−2 (4.6)

The remaining factors in Equation 4.6 are constant factors or related to the interrogating fre-

quency, which is constant between the interrogator and the tag. The effective aperture Areader of the

interrogator remains constant, while that of the tag and knitted antenna (Atag) changes over time

as the antenna is stretched and returned. Combining Equation 4.6 with Equation 4.3, we obtain

Equation 4.7:

ζ̂ =
r4

(4πλ−2Atag)2 ×R =
PTx,reader × (4πλ−2Areader)

2

PRx,reader
×
( λ

4π

)4

ζ̂ =
r4

A2
tag ×R

=
PTx,reader ×A2

reader

λ4 × PRx,reader

(4.7)

Using Equation 4.7, we observe that a change in frequency across adjacent 500 kHz channels

results in a constant factor increase in ζ̂ of ξ ≈ 0.009, for all channel increases from 0 to 49 (the

constant factors revert back on a channel iteration from 49 to 0, so we only consider the constant

factor present in channel iterations 0 to 49). Here, we include the conversion from Watts to dBm
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units, which we denote by ζ̂ ′ .

ζ̂
′

= 10log10

((
λ4 × 100.1×PRx,reader

)−1)
ζ̂
′

t2 − ζ̂
′

t1 = −10log10
f4
t1

f4
t2

ft2 = (ft1 + 500kHz), f < 927.25MHz

ξ = ζ̂
′

t2 − ζ̂
′

t1 = 10log10
f4
t1

(ft1 + 500kHz)4
≈ 0.009

(4.8)

PRx,reader (RSSI) is quantized to the whole number, so this residual term is not modeled precisely

and results in a small sawtooth pattern in ζ̂ that repeats as the interrogation frequency iterates from

927.25 MHz back to 902.75 MHz (channel 49 to channel 0). Despite the small magnitude, because

we are observing oscillatory patterns in the data, it is desirable to remove any known oscillatory

patterns. Therefore, we correct the calculation of ζ̂ per Equation 4.9:

ζ = ζ̂ + ξ × b(49− 2× f − 902.75× 106

106
)c (4.9)

These corrected physical measurements are used in Chapters 8 and 9 to perform time-series

analysis and estimation of subject state using a wearable RFID-based smart garment device. Here,

we focus on structuring the ζ and η physical signals for strain gauge analysis. ζ is already highly

quantized to integers along the dynamic range, which is often under 5-10 dBm of RSSI. Further,

both the tag radius and effective aperture are subject to perturbations due to motion artifacts,

introducing a factor of r4 and A−2
tag into the same signal; often in our efforts, one factor is a noise

artifact while the other represents the desired signal. RFID-based inventory applications are not

concerned at the application layer with these perturbations, because the EPC tag component is the

desired signal and can arrive over any path; ranging applications can use fixed RFID tags and thus

hold constant the effective aperture component in favor of the radius. Machine learning techniques

are needed to inspect the aggregate ζ signal in real time to separate motion artifact components

from one another.
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The tag velocity η signal uses the reported Doppler shift to compute the instantaneous tag

velocity. Small shifts in phase are reported more accurately by the Impinj in some applications55,

and so it is desirable to use the phase for this calculation instead. However, this would require

discarding records except for those of the same interrogation frequency, because this also perturbs the

phase observation and subsequent velocity calculation. In other countries, continuous interrogation

at a single frequency is possible, and so a phase-based observation is facilitated55. When the read

rate is large (i.e., 25 Hz or more), a phase-based velocity measurement is used since most records

will use the same interrogation frequency; however, it is time prohibitive to wait the 10 seconds that

would be required to complete a full cycle through all interrogation frequencies for this purpose, and

the Doppler-based velocity measure is typically favored for this application.

For fixed-tag applications, the tag delay spread can be used as an indicator of multipath propa-

gation105, because these different reflective paths require different echo time durations to arrive at

the interrogator. Tag responses with a round trip time within 1
2 σ̂∆t on either side of the mode of all

observed ∆t, with σ̂∆t defined as the standard deviation of those values of ∆t within one standard

deviation of the overall mean ∆t.

Spurious spikes are possible due to power loss resulting from taking a non-ideal path in a mul-

tipath environment, or due to unwanted mechanical noise artifacts from ambient movements. To

eliminate these spikes, all peak amplitudes are identified in the window, and those power spikes

smaller than the first quartile of all power spike amplitudes, that do not correspond with a velocity

change greater than the first quartile of all velocity spike amplitudes, are removed.

This smoothed signal is converted to a square wave using classification via Fisher Linear Dis-

criminant Analysis (LDA)106. The resulting ζ and η are arranged as tuples in R2 and separated

into stretching data points and non-stretching data points. Although there is some variation from

theoretical physical signal properties due to slight variations in physical characteristics among RFID

tags, as well as variations between human subjects in their exact movements54, we wish to avoid fully

supervised training because a semi-automated approach is desirable, and because full supervision

of the start and endpoints of the observed activity, such as respiratory behavior, would be difficult.
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However, LDA requires training classifications, so we employ a semi-unsupervised approach. The

first 30 seconds of data is observed and assumed to be “normal” respiratory activity of unknown

parameters.

To provide this training data, a Hidden Markov Switching Model is applied to these 30 seconds

of data to search for the centroids of the stretching and non-stretching records. A Hidden Markov

Switching Model assumes that data being considered falls into N distinct probability distributions

or “regimes.” In our case, we assume that these are Gaussian distributions, and that there are N = 2

such regimes to be considered (stretching and non-stretching). A Markov Switching Model works

by estimating the properties (i.e., the mean µ and the standard deviation σ) of these distributions,

and then predict with what probability a data point fits into each distribution. One advantage

of a Markov Switching Model is its Markov property: the classification of the previous data point

is considered when classifying the current data point, so some temporal dependency is considered.

This is advantageous in our applications because temporal persistence in each state is assured: if one

takes a breath, it will cause a relatively prolonged stretch of the band relative to the interrogation

rate. Therefore, a Markov Switching Model constructs a 2N ×2N probability state transition matrix

that describes the probability of switching from any one regime to any other (including the current)

regime. Each probability is the Bayesian likelihood P (θ|xt, xt−1) for regime θ and data point xt.

The probability distribution of x can be computed easily by observation of the mean and standard

deviation of the population. For N = 2, we also have P (θ = 0) = 1 − P (θ = 1) by the law of

total probability. A search using Gradient Descent via the Maximum Likelihood product of the

probability chain is used to find an optimal or approximately optimal set of distributions for the

conditional probabilities P (θ|xt, xt−1). Gradient Descent over the distributions’ properties according

to their maximum likelihood approaches the ideal distribution parameters as the number of Gradient

Descent iterations increases by maximizing the probability of classifying a given data point to either

regime in that iteration.

Subsequent data windows are fit to this model to obtain the transition points between stretching

and non-stretching activity. ζ and η tuples are separated into these two categories according to their
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classification by the Hidden Markov Switching Model. Because a Markov Switching Model separates

data into two classes without assigning meaning to those two classes, class 0 is arbitrarily defined

for consistency to be that class whose mean value of ζ is smaller in that window. The Markov

Switching Model produces two distributions of observed data, roughly into two classes (stretching

and non-stretching). The multivariate separability between the two classes is defined by Fisher’s

LDA measure in Equation 4.10, for covariance matrix Σθ and mean µθ in class θ.

s =
(Σ0 + Σ1)−1(µ1 − µ0) · (µ1 − µ0)2

((Σ0 + Σ1)−1(µ1 − µ0))T (Σ0 + Σ1)((Σ0 + Σ1)−1(µ1 − µ0))
(4.10)

Using Equation 4.10, we determine the likelihood ratio of a data record belonging to one or

another of these distributions. Classifications result in a square wave that approximates the desired

signal from the physical observations of ζ and η. The likelihood of classifying into class θ given data

record x and Markov predicted class centroids θ̂ is given in Equation 4.11.

l(θ|x; θ̂) =

1∑
θ=0

(−1)θ((x− µθ)TΣ−1
θ (x− µθ) + ln(Σθ)) (4.11)

The likelihood scores from Equation 4.11 are evaluated via a sigmoid function (Equation 4.12)

centered around an offset µ̂1 equal to the mean of those scores computed for data records that were

classified into class θ̂ = 1 by the Markov Switching Model.

s(x; µ̂1) = (1 + exp(−x+ µ̂1))−1 (4.12)

Additionally, a cumulative density function p is defined via a histogram for those likelihood

scores classified by the Markov Switching Model into each class: l(θ|x; θ̂ = 0) and l(θ|x; θ̂ = 1). The

likelihood ratio of the Markov Switching Model classifying a given score into one class or another

measures the confusability between the two classes. This ratio is given via Logistic Regression in

Equation 4.13.

r(θ|θ̂) = (1 + exp(−ln(p(θ|θ̂ = 1)(1− p(θ|θ̂ = 0))−1)))−1 (4.13)
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These likelihoods s and r are combined by taking their product. Rather than apply a simple

threshold a priori, as is typical in discriminant modeling and analysis107, the changes in classifi-

cation are identified dynamically by inspecting peaks of the signal formed from the product rs.

Dynamic classifications allow tolerance for changing environmental conditions without specifying a

threshold for depth of stretch given the distance from the interrogator and a complete model of the

environment. Strain gauge activity such as respiratory behavior causes likelihood transitions that

shift from one class to another throughout the duration of the stretch. Because we are already able

to determine lack of stretching activity in the window (see Chapter 6) and changes in underlying

environmental conditions (see Section 6.6), we can ignore these cases here and identify the shifts

in likelihood classification to form a square wave from the backscatter strength signal ζ and the

velocity signal η.

4.2 Software Infrastructure

For comparison testing across interrogation devices and RFID garment devices, it is preferable to

obtain data from existing devices in a format compatible with our RFID time-series data. Where

possible, digital data is collected using client driver software modules from devices such as the Philips

50XM fetal monitor, and emitted for graphical display or statistical analysis as described for our

RFID-based sensors. Side-by-side data plots from the RFID reader and 50XM tocodynamometer are

shown in Figure 4.1, with a comparison of filtered data between the two devices shown in Figure 4.2.

The complete monitoring solution itself is completely wireless and requires no external battery

source. The architecture of the physical deployment solution, including simulation equipment, is

described in Figure 4.3. Here, a Raspberry Pi contains the Client and Server packages, as well as

the Database backend. It drives the RFID Interrogator, Tocodynamometer, or other interrogation

device monitoring a subject, mannequin, or test device, over ethernet or a serial connection. This

interaction is encapsulated into each Client subclass, so that the resulting data is a stream of

time-series values corresponding to the interrogation measurements to be dispatched to the Server.

Groups of time series data are sent to the server and database using an HTTP PUT body message,

detailed in this Section. A second Raspberry Pi contains the Visualizer and Detector modules
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Figure 4.1: A tocodynamometer pressure sensor is placed above a Bellyband on a “pregnant
mannequin” and monitored using our software (the RFID data plot is to the left, and the
tocodynamometer data plot is to the right).

Figure 4.2: Visualization of data collected from a Tocodynamometer (top) and RFID (bot-
tom), with a Gaussian filter and saturation point applied

Chapter 4: RFID Modeling 4.2 Software Infrastructure



43

Figure 4.3: Communications diagram of the sensor data collection system that interfaces
with the interrogator software described in Figure 4.8; here, a single entity or software class is
depicted as a rectangle, a packaged collection of software classes is depicted as a folder, and
arrows indicate that an entity invokes (“uses”) or communicates with (“http remote dispatch”)
another entity

(because visualization is CPU intensive), and uses HTTP request messages to the Server web service

to poll for time-series measurement data periodically.

The database storage layer was separated from the interrogation layer to enable flexibility in

sensor interrogation design, so that new sensors and interrogators, including non-RFID comparison

devices, could be deployed without the need to re-deploy a database solution for each one. Addi-

tionally, this encapsulation enables the design of a generic database interface, allowing for multiple

database implementations. This was useful in overcoming compatibility issues between database

server software such as MySql and the ARM implementation provided for the Raspberry Pi. The

database schema is given in Figure 4.4.
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Figure 4.4: Database schema for the encrypted RFID data and HIPAA audit table
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1 "data": [

2 {

3 "db_password": "xxxx"

4 "rssi" : -50,

5 "relative_time": 9.12345,

6 "interrogator_time":

7 1/1/2016 23:59:59.12345,

8 "channelindex": 10,

9 "epc96": "2015abc",

10 "antenna": 1,

11 "doppler": 0,

12 "phase": 0

13 },

14 ...

15 ]

Listing 1: HTTP PUT body to insert a tag interrogation into the database backend

The web server loads an SSL key and certificate for the server to enable encrypted HTTPS

communication with the interrogator, and exposes the database table to the interrogator and to the

data processing layer via a series of URL endpoints that return all or some of the time-series data

contained therein. These service endpoints include:

• POST /api/rssi/<x>/<y>: Retrieve interrogation data, optionally between timestamps x

and y

• PUT /api/rssi: Insert one or more interrogation records into the database

• GET /api/audit: Retrieve the contents of the audit log

To insert one or more tag interrogations into the database, an HTTP PUT body is appended

to the /api/rssi URL endpoint, representing a JavaScript Object Notation (JSON) array of one

or more interrogation objects, as shown in Listing 1. Because the db password provided as part of

the PUT request is used to encrypt the data, that password is needed as part of the HTTP body

of any retrieval request as well; this is the only required element of the data retrieval web service

endpoints. The JSON HTTP body required with all HTTP POST endpoints is shown in Listing 2.

Data are provided to the web service layer as a plaintext HTTP PUT body transmitted encrypted
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1 {

2 "data": {

3 "db_password": "xxxx"

4 }

5 }

Listing 2: The HTTP POST body to retrieve data from the database requires only the
database password used to encrypt the data when it was inserted using a PUT request

via HTTPS, and the database module encrypts the values using the user password also specified in

the HTTP PUT body prior to insertion into the database.

4.3 RFID Physical Infrastructure

The overall architecture of this software prototype is described by the following package diagram,

shown in Figure 4.5. It describes the interactions between seven independent but communicating

modules, that interface between the underlying protocol and the hardware, producing a standard

data format that the processing modules can parse. This prevents differences in protocols or protocol

implementations from impacting the modules in the layer above, because the lower-level modules

serve as adapters providing common interfaces to them.

The lowest-level of these packages is the Data Reader, which is implemented by two modules:

the LLRP Data Reader and the Bluetooth Data Reader. Each module interfaces with its

respective device (the Impinj for the LLRP Data Reader and the IP30 Bluetooth for the Bluetooth

Data Reader). Although their protocols are different, each reads RFID tag event messages from its

respective device and constructs a dictionary object containing (at a minimum) the EPC tag, An-

tenna, RSSI value, and Timestamp. This dictionary is then converted to an XML document, either

by the LLRPyC client LLRP Protocol module, or by the XML To Dict module. Regardless, the

resulting XML document is identical and is depicted by the code listing below and diagrammed in

Figure 4.6.

<RO ACCESS REPORT>

<Ver>1</Ver>
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llrp_proto tag_data

graph_animator

data_reader

coordinate_list

xmltodict

bluetooth_data_reader

Figure 4.5: RFID UML Package Diagram

RO_ACCESS_REPORT

Ver Type ID TagReportData

1 61 2323 EPC-96 Antenna RSSI Timestamp

EPC

00e200600312226a4b000000

Antenna

0001

RSSI

ba

Timestamp

9142375

Figure 4.6: Structure of a Sample Read Event Message XML Document
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<Type>61</Type>

<ID>2323</ID>

<TagReportData>

<EPC−96>

<EPC>00 e200600312226a4b000000</EPC>

</EPC−96>

<RSSI>

<RSSI>ba</RSSI>

</RSSI>

<Timestamp>

<Timestamp>9142375</Timestamp>

</Timestamp>

<Antenna>

<Antenna>0001</Antenna>

</Antenna>

</TagReportData>

</RO ACCESS REPORT>

This XML document is parsed and the underlying parameter values are passed into an array

of data structures provided by the Tag Data module. This module holds the sequence of RFID

read event messages (represented by the XML structure in Figure 4.6), and provides a suite of

functionality to the presentation layer, including plotting and interpolating the data, finding read

gaps in the data in which the RFID tag may have been stretched for a period of time, or animating

the plot in real-time. The animated plot implementation became significant enough that it merited

its own sub-module, the Graph Animator module, which reads data live via a thread from the Tag

Data module, stores its X and Y coordinates in a data structure provided by the Coordinate List

module, and then plots any points that have not yet been plotted, rendering a live animation for

the viewer. The Coordinate List module provides a list of X and Y coordinates and groups them
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by EPC96 tag, so that different RFID chips can be plotted separately by the Graph Animator.

After sending the Impinj Enable Custom Extensions message, the ROSpec can be configured

with various Impinj custom extensions that result in additional measurements emitted from the

interrogator for data collection. A Wireshark network trace of the Add ROSpec message showing

the encodings for the Impinj vendor ID and these parameters (as indicated by the Impinj specifica-

tions108) is shown in Figure 4.7.

Each time a tag interrogation report is received from the interrogator, the client software emits an

HTTP PUT command to the web service including the data from that interrogation. This, in turn,

inserts the tag into the remote database. This is done through an asynchronous callback invoked by

the LLRP finite state machine each time an RO ACCESS REPORT message is received containing tag

interrogation data22;36;109.

A summary of interactions among the interrogator modules and its communication with the

backend web service layer using a remote HTTP connection is described in Figure 4.8. Addition-

ally, the interactions between the modules in the database and web service layer are described in

Figure 4.9.

We configured the RFID interrogator to target 90 Hz interrogation rate of all tags, with small

fluctuations in read rate at “channel boundaries” when the interrogator hops from one frequency to

another18. These fluctuations were removed during data processing via interpolation and resampling,

and were suitable for time-series Fourier analysis.

Portability: Bluetooth Extension

The Impinj Speedway is a powerful but fixed RFID interrogator that can read multiple RFID chips

at a high rate (approximately 30 per second). This is useful for research and development purposes,

and may be appropriate for fixed-installation in a room or near a hospital bed; however, given the

passive nature of the RFID chip and proximity antenna, it is desirable to integrate this with a

portable interrogator that could be carried during mobility or relocated as-needed. This is useful in

the biomedical context for pregnancy uterine monitoring, as this can enable truly mobile monitoring

of uterine activity.
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Figure 4.7: Modified Add ROSpec message sent to the Impinj R420 in order to enable custom
interrogator measurements including the Doppler and phase values
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Figure 4.8: High level design of software interface to drive the RFID interrogator, storing
time-series data captured into the backend database via HTTP web service calls to the web
service depicted in Figure 4.9

Figure 4.9: High level design of the backend database structures exposed by the web service;
here, software class entities are represented as boxes, and arrows between those entities indicate
that the entity “contains” another, invokes functionality in (“uses”) another, or implements
(“extends”) a generic interface with functionality specific to a particular implementation (i.e.,
a particular database installation)
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To facilitate this, the Intermec IP30 Bluetooth RFID reader110 (see Figure 4.10) was used to

collect the raw RFID data for the software. Unfortunately, the IP30 did not output its data according

to the LLRP protocol, but instead allowed for a configurable output format. This is unfortunate

because it is not, by default, compatible with the RFID processing software described in this chapter.

A software layer was written to adapt the LLRP protocol server to the analysis framework for

compatibility.

Figure 4.10: Bluetooth Portable RFID Interrogator

Because the Impinj device acts as an LLRP server operating over TCP/IP, a TCP/IP server

module was written with a similar interface to the LLRP protocol server, but, instead of emitting

LLRP protocol messages, creates a Bluetooth connection to the RFID reader device. The LLRP

protocol client takes the read event messages from the Impinj RFID reader and converts them into an

XML document, so the Bluetooth RFID server module creates and emits this same XML message.

This way, the processing modules of the software can operate without regard to which type of device

is being used to interrogate the RFID chip.

Originally, the IP30 device was programmed to automatically emit read event messages as they

are interrogated; however, these events are clustered and sent several at a time, with only a single

timestamp for the entire message. The time-sensitivity of the signal processing required by this

study is such that it is necessary to provide a precise timestamp for each read event message received,

time-stamped by the interrogator at the time it was received (and not at the time it was sent to
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the client). It was determined that individual polling of the IP30 results in the received timestamp

being provided; therefore, the Bluetooth RFID server module was modified to continuously poll the

IP30 for read event messages. The protocol of the Bluetooth RFID server module is as shown in

Figure 4.11.

Await connection from data processor

Find Bluetooth device (IP30-25111159552)

Determine Bluetooth port

Configure to respond to polling and to return EPC96, Timestamp, RSSI Value, and Antenna ID

Poll for read events

Convert to XML document identical to that produced by the LLRP RFID protocol client

Write one XML report per tag event read to the client

Close connection

Figure 4.11: Bluetooth Portable RFID Server Module Custom Protocol Workflow

Upon making a Bluetooth connection to the interrogator, the following messages are sent to

begin continuous polling for RFID tags in the field:

READ EPCID TIME RSSI ANTENNA REPORT=EVENT

READ POLL

These commands result in repeated messages returned to the interrogating client of the following

structure, which is converted from a serial text-based event message (see Figure 4.12) to the familiar

XML-based RFID event message as seen in Figure 4.6 for processing.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

“EVT:”

“TAG” EPC · · ·
Timestamp · · · RSSI · · · Antenna · · ·

Figure 4.12: Bit-level description of an RFID event message sent by the Bluetooth IP30
portable interrogator

One challenge highlighted by the portability of the Bluetooth RFID reader is that movement of

the reader, the RFID chip, the fabric, or the patient will alter the received signal strength sensed

by the interrogator and thus processed by the software. One potential solution to this problem is

the deployment of ambient sensors on other parts of the body to detect and compare movement

unrelated to the medical event being monitored, or deployment of Gradiometer electrodes111.

Tocodynamometer

One benefit of this framework is its applicability to heterogeneous signal sources, including LLRP-

based RFID interrogators, Bluetooth-based RFID interrogators, and other biomedical sensing de-

vices. A critical element of this research is the ability to compare RFID data collected to data

collected from a traditional medical device. This is accomplished by substituting our reader mod-

ule (see Figure 4.5) with one we developed to read a particular tocodynamometer device using its

proprietary protocol over a serial interface traditionally used to support external hospital monitors.

Instead of the RSSI value, the transducer pressure monitor value is emitted into the framework’s

data store, and is filtered and processed using the same framework modules we developed in this

work. The experimental scripts were re-run with both the RFID and the tocodynamometer soft-

ware modules running, and with both the bellyband and the tocodynamometer transducer attached

to the air bladder (see Figure 4.2). Per the Philips specifications112, tocodynamometer data are

transmitted serially over the RS232 interface for processing. The format of each message is shown

in Figure 4.13:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DLE (0x10) STX (0x02) Block Data Block Data

Block Data · · ·
DLE (0x10) ETX (0x3) CRC HIGH CRC LOW

Figure 4.13: Bit-level description of a serial data message from the Philips 50XM tocody-
namometer

The CRC bytes are checksums for error detection and/or correction. The 50XM uses the CRC

polynomial x16 + x12 + x5 + 1, this corresponds to a CRC coefficient vector of 0x11021112. The

Block Data field varies depending on the type of data observed, but we are interested in type

67 for the pressure transducer. Other data types can be ignored, and this packet is structured

with a three-byte type field, followed by four three-byte fields corresponding to the recent history

(oldest to newest) of heart rate, which is repeated for a second heart rate sensor, and repeated again

for the maternal heart rate sensor. These represent the most recent second of data, collected at

0.25 second intervals. These are bitmasked to observe the least significant 12 bits, and divided by

4.0 to obtain the fractional component of each value. The next four bytes represent two seconds

of tocodynamometer values, oldest to newest, at 0.5 second resolution. These are divided by 2.0

to obtain the fractional component of each value. A two-byte heart rate mode, one-byte pressure

transducer mode, and a one-byte SPO2 reading completes this message structure.

The letter ‘G’ is sent to the tocodynamometer over the RS232 interface to begin data collection,

and the letter ‘H’ is sent to terminate the connection. The message data, including the CRC

checksum bytes, are echoed back to the tocodynamometer to acknowledge the packet and continue

the transaction.

4.3.1 Modifications for Real-Time Performance

Further improvements were needed to the sllurp library, which were also implemented to the web

service and interrogation layers, to enable real-time monitoring performance. Two problems were

observed during RFID interrogation: first, the network-level processing of the data required more

time than the period between receiving two interrogation reports. This resulted in a processing

lag for each interrogation report that worsened over time and eliminated real-time performance.
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Second, the TCP buffer at the network layer of the receiver was filling faster than the tags could

be forwarded to the library for processing, exacerbating the delay and resulting in dropped packets

resulting in “gaps” in the data of up to 10 seconds.

The problem was caused by the processing that took place for each tag interrogation report

prior to passing the report data to the consumer for storage. This processing could include parsing

the data, determining whether the report contains relevant interrogation data to the processor, and

deciding whether a complete LLRP message had been received. Because LLRP uses asynchronous

networking, the data read from the network card may or may not represent a complete LLRP

message, and may require additional data still arriving from the network. Unfortunately, it was not

possible to configure the Impinj R420 to group interrogations into a single report, such that multiple

tags could be parsed with a single network call. Although the Impinj R420 provides this functionality

to reduce the number of network calls, it is implemented by discarding the duplicate packets because

it is believed that they are redundant if the goal is to perform inventory management of a single

tag. To address this problem, a producer-consumer queue was created in the LLRP library and

replicated at the web server, interrogator, and database modules18. A separate thread executes the

parsing code in parallel, extracting data from the queue until a complete message is received, or

until the queue becomes empty (this is the “consumer” behavior). The parsing thread suspends if

the queue is empty, yielding its processing time to the producer thread. The producer-consumer

thread model is illustrated in Figure 4.14. If the interrogation computer has multiple CPU cores,

these two threads can run in parallel, enabling real-time performance; however, because most of the

producer thread’s behavior is networking I/O, it regularly blocks until asynchronous network data

arrives, yielding its CPU time to the consumer thread to “catch up” by processing any lingering

data on the queue. Previously, the network I/O and incoming data processing was a synchronous

process (the “former path” depicted in Figure 4.14), but has been reorganized to two processes that

asynchronously share a queue. Thus, with this approach, we have observed no lag or data gaps at a

90 Hz interrogation rate by moving the data parsing behavior of the sllurp library from a series to

a parallel process.
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Figure 4.14: The classic Producer-Consumer threading model enables a producer thread to
append data to a queue, where a consumer thread retrieves that data and performs deferred
processing while the producer thread simultaneously obtains or generates more data to be
processed

Additionally, the sllurp library was modified to disable Nagle’s TCP algorithm. Nagle’s algorithm

delays transmission of network data until a sufficient amount has been received to offset the overhead

in addressing and transmitting the packet113. At first consideration, this would appear to help

alleviate the issue of processing delays due to TCP packet overload; however, the producer-consumer

model shown in Figure 4.14 mitigates this at the application layer. As a result, enabling Nagle’s

algorithm only induces a delay in receiving real-time interrogation data, which is preferable to

eliminate. To do this, Nagle’s algorithm was disabled in the sllurp library, and instead the producer-

consumer thread model was implemented at the interrogator, web service, and database layers with a

time-delay. In this way, packets are only transmitted over the network at a pre-defined interval that

is determined by the application; when packets are transmitted, all queued interrogation messages

are sent in a single message packet, reducing the processing overhead of the network transmission.

Because most of our applications consider data from the past 1 to 6 second time horizon (“window”),
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it is only necessary to deliver processed interrogation data to the signal processing layer every 1 to

6 seconds. We have chosen a more conservative 750 milliseconds transmission delay, which has

maintained our desired 90 Hz interrogation rate.

Modifications to the llrp and sllrp libraries22;36;109 to enable Doppler and phase reporting as well

as the performance controls and enhancements are given in diff format in Appendix B.

4.3.2 Security Considerations

HIPAA law provides data security and privacy guidelines and regulations for systems that store

or transmit protected health information (PHI). It covers data at-rest and data in-transit, which

includes data stored on a database system and data transmitted over a network. As discussed in this

Section, our system stores and transmits RFID physical data features. Although we do not store

personally identifiable information that could be considered PHI, we choose to secure our system

in accordance with HIPAA regulations18 anyway, in case a database could be linked back to an

individual on the basis of other information such as the computer used to collect the data, the date,

time, and location in which collection took place.

For data in-transit, we use HTTP over SSL (HTTPS) to encrypt data between the client and the

database for storage. At the database, data are encrypted using the Advanced Encryption Standard

(AES)114, a symmetric key strategy, and store the data in a database or clinical-trial data storage

system such as REDCap115. One challenge is that the data tend to remain constant except when

a motion event takes place. Typically, symmetric-key ciphers encrypt the same plaintext to the

same ciphertext, leading to a vulnerability in time-series data in which patterns may emerge. Here,

the physical RFID property values are encrypted to the same ciphertext, which presents a “known

ciphertext vulnerability” in which the original data (or, at least, their underlying meaning) can be

extracted from the ciphertext. The REDCap interface does not permit automated data retrieval

in order to maintain clinical privacy, although we can integrate posting data from the interrogator

to REDCap automatically via its RESTful interface116. To mitigate this issue, the data can be

manually exported from REDCap onto an encrypted hard drive, and a web server database module

is provided that is capable of converting and reading that format as if it had been captured natively
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by an interrogator in real-time. Even when using REDCap, the data we store is encrypted using

the AES key, anyway, to maintain compatibility with the web service layer which expects encrypted

data to be exported from REDCap.

To overcome this, we encrypt database records using the Time-Based One-Time Password Algo-

rithm (TOTP) (RFC 6238)117 by utilizing an automatically generated timestamp, without requiring

human entry of a time-based salt, which is random data added to encrypted plaintext and subse-

quently removed on decryption, used to perturb the corresponding ciphertext for known inputs.

This will enable encryption of individual rows in a database and will ensure unique ciphertexts for

the same database value recorded multiple times. We generate a new key for encryption of each

individual record of data. This key is generated from a symmetric-key password from the user,

plus the timestamp from the record, and is re-generated on-demand for each row upon symmetric

decryption. The time-salt typically entered manually by the user when using TOTP for Two-Factor

Authentication can be automatically provided by the programmatic timestamp. With this scheme,

multiple recordings of the same data value will not have the same ciphertext. The scheme uses a

TOTP generator as part of its key and can automate the encryption and storage of data in streaming

applications. Thus, the TOTP validation window (that allows the user to validate time-salts that

occurred prior to or after the true current time-salt, in case of time synchronization of speed-of-entry

issues) can be reduced to 1, since the programmatic timestamp will always be synchronized.
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Chapter 5: Feature Extraction

In order to classify subject state, it is necessary to compute features of the physical properties of

the RFID backscatter signal. The Impinj Speedway R420 provides three physical measures for each

interrogation: the RSSI, Doppler, and Phase angle. We correct these measures for perturbations

in the interrogation frequency (which is also provided by the R420 for each interrogation) using

Equations 4.1 and 4.2.

We now classify subject state from these measures: for example, whether the band is being

stretched or is stationary, or whether the RFID tag is being moved through the field. If the features

are fully separable, then this problem reduces to that of identifying a perceptron, a function that

defines the boundary that separates the data. Data are often not cleanly separable, and noise in

the data can shift data points across the dividing boundary in error. When data are not linearly

separable, the perceptron polynomial order can be increased, rendering the data “linearly separable”

in higher order space. However, this exacerbates the noise inherent in the data, as the perceptron

boundary becomes artificially non-linear and the boundary margin between the data classes becomes

smaller. The result is overfitting118, which can be overcome with additional sample “training” data.

However, this training data comes at the cost of prolonged training periods, where real-time data

must be collected for a long period of time in order to satisfy this constraint.

A separating kernel function such as a perceptron works by separating data vectors xi into classes

yi (y ∈ 0, 1) for each time epoch i. A linear perceptron provides a linear function for performing

this separation by computing weights w that discriminate training data x about a threshold. This

threshold is often defined as 0, such that the sign of the resulting classification y can be used as

the class, as shown in Equation 5.1. As each training vector xi is provided to the perceptron, the

weights w are updated such that an abstract “dividing line” is maintained that separates all training

vectors within each class. It is often the case in practice that the data is not perfectly separable,

even during training. When this occurs, the weights could instead be computed to maximize the
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margin between the maximum number of data elements between the two classes, as is done with an

SVM71.

y = sign(w0 +

k∑
i=1

xiwi) (5.1)

Typically, our aim is to classify perturbations in the physical properties of the RF backscatter

signal that result from deformations of the knitted fabric antenna. However, these backscatter

signal properties are dependent upon the impedance match between the antenna and the tag, which

is altered as the knitted antenna shape is deformed due to strain, as well as the distance between

the tag and the interrogator, which is altered as the garment itself is moved about in space. Noise

artifacts are introduced into the observed signal because stretching and coarse movements may occur

simultaneously, because training classification of continuous movements such as respiratory activity is

difficult since brief pauses occur naturally in-between expiration and inspiration which would present

as stationary data but would not be classified as non-breathing, and because RF noise artifacts

may reduce or eliminate complete separability between the classes. Additionally, perceptron-based

classification requires training samples that will reflect future conditions; changing environmental

conditions and unrelated human movements may alter these conditions, limiting the separating

power of the established perceptron, and necessitating monitoring or retraining of these conditions

over time. Absent these challenges, a significant number of training samples is needed to ensure that

the weights w are adjusted to adequately separate the data; perfect separation is only assured if an

infinite number of training samples are provided; Hoeffding’s Inequality (see Equation 5.2118) yields

a misclassification probability upper bound for a desired accuracy and number of training samples.

Pr(‖Y − E[Y ]‖ > ε) ≤ δ = 2e−2nε2 (5.2)

Hoeffding’s Inequality gives the probability of misclassifying the expected value of the prediction

of new data vectors E[Y ] from the given training data set Y beyond an error bound ε. This upper-

bounded probability is given as δ, which is exponentially related to the number of training samples
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n and the error bound ε. Thus, the probability of misclassification due to a failure to generalize

a model from the training set is reduced as the number of training samples n is increased, or as

the error bound ε is relaxed119. Vapnik and Chervonekis further constrain Hoeffding’s Inequality

by considering only those models that uniquely alter the classification predictions in order to avoid

double-counting misclassifications for purposes of computing this probability bound. The resulting

VC-Dimension is the maximum number of data vectors that can be “shattered,” or separated by

the classifier120, and is related to the dimension of the training data vectors. The VC-Dimension

is given in Equation 5.3118, and iteratively relates the required number of training data vectors n

to the probability bound δ via the VC-Dimension dV C . dV C is defined as the number one greater

than the dimensionality of the training input vectors for linear perceptrons such as the SVM. The

relationship between δ and dV C explains the “curse of dimensionality” that results from training

a classifier on too many data features, resulting in overfitting and misclassifications due to loss of

generality of the separating line between the data classes.

nk+1 ≥ 8
1

ε2
ln

4(2ndV Ck + 1)

δ
(5.3)

As a typical example, if the mean of the RSSI and standard deviation of the RSSI are used

as classification features, they would be organized into vectors in R2, and dV C = 3. Equation 5.3

converges after approximately 4 iterations to N ≥ 5 × 108, if an error bound of ε = 0.1% and

1−δ = 95% confidence, as shown in Equation 5.4. This is an infeasible 192 days of classifier training.

N ≥ 3× 104 training samples are required for ε = 10% and 1− δ = 90%, or 17 minutes of training

data for an interrogator polling at 30 Hz. It has been similarly observed that N ≥ dV C×104 training

samples are typically required for ε = 10% and 1−δ = 90%118, but in practice, N ≥ dV C×10 has been

found to meet the ε = 10% and 1−δ = 90% tolerance bounds121, or 1 second of training data samples

at 30 Hz polling. For a tolerance of ε = 0.1% and 1 − δ = 95%, approximately 5 hours of training

data samples at 30 Hz polling (N ≥ 534×103) are required. Because the number of training samples

required varies inversely with the square of the tolerance ε, a small relaxation of tolerance results in

rapidly diminishing training requirements; for example, approximately N ≥ 4×103 training samples
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are required for a tolerance of ε = 1%, which yields a more manageable 2.3 minutes of training at

30 Hz polling.

Nk+1 ≥ 8
1

0.0012
ln

4(2N3
k + 1)

0.05
(5.4)

In addition to the time constraint to collect training data, it is often the case that example

training samples are only available for some, but not all, classes under consideration. This is a

common occurrence in anomaly detection, in which nearly all data observed falls into the “normal”

class. While methods exist to compensate for the imbalance between training classes, such as the

SMOTE method122 or a semi-supervised approach123, the imbalance of training data is exacerbated

in our biomedical applications, because the “anomaly” class (such as apnea) is medically undesirable,

or is an event that must be classified even during training (such as a uterine contraction).

Classification approaches that overcome these limitations are discussed in Chapter 6, but we

describe in this Chapter the data features extracted from the physical RFID measures that inform

the approach.

5.1 First-Order Features

First-order features of the data include statistical features such as the mean or standard deviation.

To extract these features, a window of data of a specified size is observed, and a new time series of

data is emitted consisting of the statistical measures of each window. As the window size grows, the

features converge to the population statistical features, which is desirable for removing variance due

to noise artifacts; however, the separability between the classes becomes confused as the potential

exists to include individual data points that cross classification boundaries. The window size, then,

should be large enough to incorporate one complete artifact being observed (i.e., a respiration); it is

not possible to know this window size a priori for all subjects, and an estimate is used based upon

the read rate of the interrogator (i.e., 0.5 seconds of data).

Once the features are collected, their suitability for classification can be evaluated based upon

their mixture between classes. In other words, the separability of two features is inversely related to
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the overlap between their histograms. We can evaluate this more formally using the Fisher Linear

Discriminant Ratio Analysis106 (FDR), defined in Equation 5.5. Here, the mean and standard

deviation of the feature time series data computed in each class x is computed as µx and σx are

compared: a greater difference in the means between the two classes indicates good separability of

the feature, and a smaller difference in the standard deviation also indicates good separability, since

the feature data are less likely to overlap.

F =
(µ1 − µ2)2

σ2
1 + σ2

2

(5.5)

For our application, one challenge is identifying data into one class or another, since the anomaly

class is often undesirable. Thus, we cannot label the data into classes using human testing. However,

we expect that the results of this study will inform generalizable algorithm development, and there-

fore FDR analysis will not be required on every trial. Therefore, a Laerdal SimBaby38 programmable

mannequin (see Figure 13.1) was used to collect stretching and non-stretching data for comparison.

Statistical features were computed on windows of stretching data and on identical-sized windows

of non-stretching data, and the FDR of each feature was computed according to Equation 5.5. We

performed this analysis with and without data filtering applied (see Section 5.3). This resulted in

the FDR values shown in Table 5.1.

Table 5.1: A listing of Fisher Linear Discriminant Ratio scores for several features of RSSI
data, indicating separability of the data between the actuating and non-actuating class, for
unfiltered physical RFID data and Kalman-filtered physical RFID data.

Minimum Maximum Median Mean

Unfiltered 1.25 0.34 2.14 2.23

Filtered 1.56 0.93 2.19 2.16

Skewness Kurtosis Standard Deviation FFT Average Frequency

Unfiltered 0.46 0.73 1.20 0.04

Filtered 0.32 0.13 0.91 0.04

From Table 5.1, we observe low separability among these first-order features, indicating mixture
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between the data. This is unsurprising, given that some time is spent during each band stretch in

a stationary position: the band is at rest in-between “breaths,” and is also not moving during the

period in which the band is fully stretched prior to retraction. This result suggests that a temporal

relationship such as a Markov Chain (discussed in Sections 6.3 and 6.6) will better inform state

classification. However, it is common to observe RSSI dynamic range from fully stretched to at-rest

on a human body of 1 to 2 dBm of RSSI, as opposed to a more typical 5 to 10 dBm of RSSI at

distances of 2 to 5 feet; the reduction of RSSI dynamic range is due to the absorption of RF energy

by the human body that would have been reflected by the antenna in open air. Noise artifacts and

multipathing can account for nearly all of the dynamic range in this situation, and deeper feature

relationships are needed to reliably classify the state of the band and wearer.

5.2 Unbalanced Classification

Although separability between all of these features is minimal with some overlap between the two

classes, due in part to the inclusion of stationary periods in the non-stationary class, we perform

classification on these first-order features to provide a baseline upon which to compare more sophis-

ticated approaches. Since evaluating the FDR of these features is an offline process, it was possible

to collect the data from a mannequin and label it accurately. However, real-time classification of

that data would require labeling at least some of the data online from the human subject. This is

because environmental factors, depth of breathing, and distance between the tag and interrogator

all affect the dynamic range of the features and, thus, the perceptron that best separates them. It

is biologically infeasible to collect labeled data for both classes. Methods exist to perform classifi-

cation of anomaly data by oversampling the anomaly class122, but even this assumes that at least

some anomaly example data can be observed and labeled. Since the mean and standard deviation

were the most separable unique features, in the sense that the minimum and median are related to

the more separable mean and thus discounted, we adapt the oversampling method by generating

an entire class of training data using the samples collected in the single observable training class.

To do this, we reflect those data points above the mean of means about a horizontal line passing

through the smallest mean, and about a vertical line passing through the mean of the standard
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deviations. Observed data is only reflected above the mean of means to reduce or eliminate those

data points collected during non-stretching transitional periods between “breaths.” This still re-

sults in an imbalance between the classes, since only a subset of training data are reflected into the

anomaly class. To balance the classes, a normal distribution with a mean equal to the 5th percentile

of all observed means, and a standard deviation of all observed means. This distribution was chosen

to capture most training data points at the lower end of the observed training period, which are

likely to be those transitional points between actuating and non-actuating, while allowing for some

overlap of the data into the margin between the classes due to the observed confusability between

the classes during FDR analysis. The resulting feature set collected from a SimBaby mannequin,

and the synthetic anomalies injected for classification, are depicted in Figure 5.1.

The SVM71;124 is an algorithm to compute a perceptron between classes of training data, such

as that observed here. There exist Two-Class and One-Class versions of the algorithm, and the

One-Class SVM125 is designed to handle anomaly detection in which only one class of training

data can be observed. This approach is well-suited to our problem domain; however, the One-Class

SVM draws a boundary around all sides of the training data, leading to misclassification of data

near or just beyond the boundary as anomaly data, as well as misclassification of breaths that are

unusually deep. The latter concern is easily mitigated by inspecting the anomaly data after it is

identified; however, the Two-Class SVM with injected simulated anomalies helps to mitigate both

issues. Additionally, the temporal relationship between classifications in time can be exploited with

a Two-Class SVM, because we can essentially measure the relative distance from each classified point

to the perceptron margin. We exploit this temporal trend as a classification feature in Section 6.3.

5.3 Filtering Strategy

Digital filtering of extracted features can be performed online, in real-time, prior to classification.

Filtering generally removes brief spikes in the observed data, which is more likely to be a noise artifact

than a biological artifact which will present a wider peak. Because filtering typically involves fitting

a curve or a moving average across the data, some signal will be lost from the data in the form of

dynamic range; as a result, the standard deviation is reduced across the first-order features. This
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Figure 5.1: Bellyband data observed on a programmable mannequin, classified into actuating
(blue) and non-actuating (red) classes: non-actuating training examples are generated using
a subset of the actuating training examples, and the resulting Support Vector Machine clas-
sification performance on subsequent testing data is shown as circles (correct) and triangles
(incorrect)

is evident in Table 5.1, in which the filtered separability is slightly smaller than the corresponding

unfiltered feature separability. Nevertheless, filtering and smoothing will facilitate higher-order

feature extraction such as spectral properties of the oscillatory signal, because the filters also serve

as a low-pass filter that removes the higher frequency brief spikes presented by noise artifacts. An

example low-pass filter on ζ (defined in Chapter 4) is shown in Figure 5.2.

We use three types of digital filters for our approach to facilitate a specific goal of the approach.

For temporal smoothing in which data is likely to track a particular target that may change over

time, particularly when we can model the expected changes to the target due to physical inputs,

we use a Kalman filter126 (see Figure 5.3 for an example effect of Kalman filtering on RSSI data).

To filter short-term windows of data to identify temporal trends, such as long-term RSSI deviations

due to ambient motion artifacts such as walking down a hallway during monitoring, we use Locally

Weighted Scatterplot Smoothing (LOWESS)127. Finally, when filtering to smooth out brief and/or

rapid spikes in the data as a low-pass filter for denoising, we use a polynomial fitting multi-pass
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Figure 5.2: Received power ζ feature filtered using a low-pass filter

Savitzky-Golay filter128 or, for longer-term white noise reduction, a multi-pass moving average filter

(which approaches a Gaussian filter as the number of filter passes grows).

One challenge when using filters is that they are often parameterized: the Savitzky-Golay fil-

ter requires a moving average window size and a polynomial order for curve fitting; however, we

attempt to adapt these parameters to capture the estimated duration of the observed artifact and

the estimated noise in the data. The parameters are chosen based upon the estimated rate of the

observed phenomenon and the sampling rate, to obtain a moving window that is approximately

one-half period in width. Like moving average filters, the Savitzky-Golay filter smooths data in the

time domain, but has limited attenuation of higher frequencies regardless of polynomial order129.

The multi-pass order of the filter is chosen to magnify the dominant frequencies in the data window;

because respiratory behavior is oscillatory but not necessarily periodic, multiple dominant frequen-

cies may be observed in the same time window. Because the convolution of the Savitzky-Golay

filter window with the input data corresponds to multiplication in the frequency domain, repeated

application of the filter has a multiplicative effect on the frequency response on the same order as
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Figure 5.3: Bellyband RSSI data over time before application of a Kalman filter (left), and
after (right), with mean and standard deviation plotted over 8-second time horizons. The RSSI
mean can be more easily observed after filtering from the actuating (highlighted in boxes) and
non-actuating time windows.

the number of passes selected (see Equation 5.6 for filter coefficients a and data window x). The

multiplicative effect attenuates non-dominant frequencies relative to the dominant one, and sacri-

fices signal dynamic range for enhanced low-pass filtering. The benefit of attenuation diminishes

as the number of passes increases, as the dynamic range of the signal is reduced; it is infeasible to

eliminate artifact components entirely without sacrificing useful signal. Therefore, a limited number

of filter passes is taken, even though this will leave behind a high-frequency, low magnitude mod-

ulation within the data. As shown in Equation 5.6, by the distributed property of convolutions,

the multi-pass filter can be prepared a priori by convolving the coefficients a (or multiplying the

corresponding frequency spectra) with themselves, without regard to the data window x, until the

desired order is obtained.

a ∗ x = F−1(F(a)F(x))

a ∗ (a ∗ x) = F−1(F(a)F−1(F(a)F(x)))

a ∗ (a ∗ x) = (a ∗ a) ∗ x = F−1(F(a)2F(x))

(5.6)
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5.4 Higher-Order Features

When the band is not actively stretching, it is either in a stationary stretched position, or in

a stationary position at-rest. During these periods, the power distribution across the frequency

spectrum should approach white noise, for large enough windows that non-Gaussiean multipath

artifacts are summed with perturbations due to environmental changes. One potential feature to

extract from the data is the maximum oscillatory magnitude observed in the Fourier Transform of

a small window (i.e., 0.5 seconds) of RSSI data.

It is difficult to test the separability of this feature since these periods occur frequently in both

classes, since the band frequently remains briefly stationary even during actuating periods. However,

by observing the duration of each respiratory activity on the SimBaby programmable mannequin,

we remove what we expect to be this intermediate data, and observe an FDR of 3.85. This FDR

is 0.49 when the intermediate stationary periods are considered, so it remains difficult to obtain

separable training data for this feature for use with a perceptron. Nevertheless, Figure 5.4 depicts

visually separable cases of actuation and non-actuation, which we will exploit for classification in

Section 6.3.

Finally, we observe that two distinct distributions should be present in windows of Bellyband

data if stretching activity is taking place, regardless of the magnitude of stretch of the knit antenna

itself. One distribution represents the noise within, and the other represents the oscillation of data

values during stretch activity. Because we do not know the properties of the two distributions we

would search for in the data, we construct a Markov Chain Monte Carlo130;131 (MCMC) simulation

to test the hypothesis that two distributions exist within the data. The MCMC simulation works by

randomly selecting possible distributions in the search space and evaluating whether each subsequent

set of distributions is a better fit than the previous set. If an improvement is found, the MCMC

moves to that set of distributions and selects another nearby set of distribution parameters in the

search space to continue evaluation. If an improvement is not found, the search randomly selects a

new set of distributions to evaluate. As with any search algorithm, it is necessary to avoid converging

upon a locally optimal solution that is not the globally optimal solution, so an MCMC simulation
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randomly warps in the search space even if an improvement is found with a small probability. Given

infinitely many iterations, the MCMC simulation should visit locally optimal solutions in the search

space more often than those with random warps; if no optimal solution exists, the simulation should

visit all possibilities approximately equally often, and at a rate greater than the random warp term

used when a converging solution is found. The simulation converges with sufficient iterations; we

chose 10,000 iterations which is sufficient given the small size of the data window yielding a more

limited number of discrete distributions that would fit the data. In the case when no optimal

solution exists, we assume that only a single distribution exists in the data accounted for by noise,

and the band was not stretched during the time period under consideration. We will use the results

of the MCMC simulation for both classification (Sections 6.3 and 6.4) and for semi-unsupervised

re-training (Section 6.6).
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Chapter 6: Activity State Classification

As discussed in Chapter 5, the Support Vector Machine was preferred for inferring subject state

using RFID interrogation. This decision was informed by the FDR metric, but other approaches

and statistical features exist. For example, k-Means Clustering132 groups collections of data, like the

SVM, but then computes the nearest centroid to a new datum point while the support vector machine

draws a line or hyperplane to separate the groups. In addition, features of the data distribution, such

as skewness and kurtosis, can inform the shape of data points for comparison to training data using

methods like SVM and k-Means Clustering. Feature-based classification of RSSI data is difficult

because of the confusability between the two classes, as can be seen in the histogram in Figure 6.1,

and as confirmed by the Fisher separability ratios computed in Table 5.1. The goal of this Chapter

is to perform effective classification of subject state (i.e., breathing or non-breathing) using noisy

RF backscatter features observed from the knitted antenna being worn by the user.

Analysis of the power spectrum utilized a t-test for hypothesis testing against the null hypothesis

that respiration activity is taking place. A t-test is described in Equation 6.1133, where s is the

sample (the maximum power spectrum in the past Ts = 0.5 second window), µ and σ2 are the

mean and variance, respectively, of all samples collected during the training period, and n is the

number of training samples collected. The t-test is inspired by the discriminant analysis carried out

in Section 4.1, and enables analysis of the feature without a separating perceptron, which is made

difficult by the mixture of both classes even during stretching activity, while requiring a minimal

amount of training data to be effective (40 samples, or 20 seconds of data using 0.5 second windows).

t =
s− µ√

σ2

n

(6.1)
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Figure 6.1: Histogram of RSSI values collected and separated into actuating “breathing” (left)
and stationary “non-breathing” (right) classes, showing the high degree of overlap between the
classes

6.1 Software Classification Framework

To conduct RFID sensor interrogation experiments, it is necessary to implement signal processing

and machine learning software to query the web service in real-time to obtain RFID interrogation

data as it is collected from the interrogator. Because of the multi-threaded asynchronous service-

based approach to implementing the server, it is possible to simultaneously make requests of the

web service using HTTP while the server is also handing requests to insert data from the RFID

interrogator(s).

In order to process the data collected and visualized into decisions that can be acted upon or

evaluated further by medical personnel, we implement an additional software module that emits a

binary signal when it determines that an event such as a contraction or apnea situation occurs. To

do this, filtering modules were created to reduce noise and quantization issues within the data; these

modules are used in post-processing to facilitate data collection in the research and development
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phase, but are compatible with real-time analysis. Here, our approach is to create a scenario and

program a pumping device such as the Laerdal SimBaby or a software-controlled peristaltic pump

to inflate an air bladder at known rates and durations. We then use our collection software to

collect the corresponding RFID data for analysis. Our goal is to determine when a certain amount

of “stretching” has occurred on the band; for this research, we quantify this by determining the

frequency with which the band is stretched by the pump against the known quantities of our testing

script. We do this by computing the Fast Fourier Transform (FFT) of the collected data, and seeking

the frequency with the highest magnitude to determine the observed rate. This method has been

used to accurately determine the inflation rate of the air bladder, and has been further improved by

applying a Gaussian filter to the collected data, as shown in Figure 6.2.

Figure 6.2: The raw data (top) collected from the RFID interrogator shows quantization and
noise removed by applying a Gaussian filter (below).

In order to process the data collected and visualized into decisions that can be acted upon or

evaluated further by medical personnel, we developed an additional software module that emits a

binary signal when it determines that an event such as a contraction or apnea situation occurs.

Filtering modules were created to first reduce noise and quantization issues within the data. Our

goal is to determine when a certain amount of “stretching” has occurred on the band; quantified

by determining the frequency with which the band is stretched by the pump against the known
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quantities of our testing script. The rate of stretching is determined by taking the FFT of the

collected data, and seeking the frequency with the highest magnitude to determine the observed

rate. The FFT has been used to accurately determine the inflation rate of the air bladder, and has

been further improved by applying a Gaussian filter to the collected data.

Because a separate web service continuously interrogates the RFID tag and presents that data

in the form of a service endpoint that queries windows of data, the statistical signal processing

module can incorporate and compare these approaches without disrupting the data collection layer.

The SVM library requires a matrix consisting of vectors of features for the training data, in which

each vector corresponds to a window of training data collected, and each element of that vector

corresponds to a feature such as the mean or standard deviation of that window. Subsequently, a

vector of features of data corresponding to the most recent unknown window is provided to the SVM

for classification. Adding additional features for study, as was done with the hypothesis testing p-

value, is accomplished by augmenting these vectors with additional window feature values. To add

additional statistical approaches, additional service endpoints are added to the signal processing

module that query the interrogation module as needed for data.

The interactions between the components at the data processing layer are described in Figure 6.3.

The Processor class is a superclass implemented by a number of signal processing subclasses, and

is responsible for receiving augmented data from the Detector, appending that data to a data

structure provided by the Pandas Python data library, separating the data by antenna, RFID tag,

and frequency channel, and notifying the subclass processors in use that new data has arrived for

processing. Those subclasses, in turn, perform signal processing, statistical inference, or machine

learning algorithms as appropriate to the application, and return aggregate values for reporting,

graphical plotting, and emergency alerting by the Detector class (for example, an alert might be

raised if the respiration rate falls below a threshold such as 15 respirations per minute).

6.2 Comparison of One-Class vs Two-Class Classifiers

With this framework we can read heterogeneous signal sources, including LLRP-based RFID in-

terrogators, Bluetooth-based RFID interrogators, and other biomedical sensing devices. A critical
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Figure 6.3: Modular implementation of signal processing software that utilizes the web service
layer to obtain live RFID interrogation data in real-time; here, the Processor is a generic
interface that is implemented (“extended”) by numerous implementation-specific processors,
such as the Short Time Fourier Transform (STFT)

element of this research is the ability to compare RFID data collected to data collected from a

traditional medical device. This is accomplished by substituting our reader module with one we

developed to read a particular tocodynamometer device using its proprietary protocol over a serial

interface traditionally used to support external hospital monitors. Instead of the RSSI value, the

transducer pressure monitor value is emitted into the framework’s data store, and is filtered and

processed using the same framework modules we developed in this work.

For respiratory data analysis, 5 minutes of continuous SimBaby data was collected with the baby

breathing from 0-60 seconds, non-breathing from 60-100 seconds, breathing from 100-210 seconds,

non-breathing from 210-240 seconds, and breathing from 240-300 seconds. Although this testing

setup is not biologically feasible, spending long periods of time in each state facilitates accuracy

testing because the class is known a priori, although real-time application is feasible. Further,

although multi-class classifiers have been applied in our research for comparison, they are impractical

for the respiratory application, since it is biologically infeasible to collect training data in the non-

breathing class. Instead, single-class novelty detector approaches are employed to detect outliers

from the “breathing” training class. The data was taken and cut into windows of various numbers

of samples. To measure the separability of statistical features such as the mean and standard
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deviation between the “breathing” and “non-breathing” classes, the FDR134 was applied to several

statistical features of the windows, and predicted the mean and standard deviation to be separable

and therefore good candidates for our classification analysis.

SVM71 and hypothesis testing were studied for inferring subject state using RFID interrogation.

Other approaches and statistical features exist. For example, k-Means Clustering132 groups collec-

tions of data, like the support vector machine, but then computes the nearest centroid to a new

datum point while the support vector machine draws a line or hyperplane to separate the groups.

Additional classifiers such as a moving average, decision tree, and elliptic curve are useful depending

on the shape of the data one expects to collect; these are discussed when One Class classifiers are

investigated in Section 6.2.1. The statistical features to collect for these classifiers were informed by

the FDR metric. Features of the data distribution, such as skewness and kurtosis, can inform the

shape of data points for comparison to training data using methods like SVM and k-Means Clus-

tering. Because a separate web service continuously interrogates the RFID tag and presents that

data in the form of a service endpoint that queries windows of data, the statistical signal processing

module can incorporate and compare these approaches without disrupting the data collection layer.

The SVM library requires a matrix consisting of vectors of features for the training data, in which

each vector corresponds to a window of training data collected, and each element of that vector

corresponds to a feature such as the mean or standard deviation of that window. Subsequently,

a vector of features of data corresponding to the most recent unknown window is provided to the

SVM for classification. Adding additional features for study, as was done with the hypothesis test-

ing p-value, is accomplished by augmenting these vectors with additional window feature values. To

add additional statistical approaches, additional service endpoints are added to the signal processing

module that query the interrogation module as needed for data. As a prototype effort, the FFT was

added to the statistical processor to determine the rate of respiration of the subject in addition to

merely the state of the subject’s respiration.

The software uses a certain percentage of the data windows as a training set to compute the

known classifications, constructs a Support Vector Machine from a training set, whose breathing

Chapter 6: State Classification 6.2 One-Class vs Two-Class Classifiers



79

and non-breathing states were known, on a given window size, and then checks the accuracy of its

predictions against the rest of the collected windows. It was observed that smaller window sizes seem

to conflate the two activity states, as evidenced by the shrinking margin for each SVM line. However,

smaller window sizes are desirable because it means that predictions can be made on smaller data

sets, meaning that alerts can be made in a shorter amount of time. An example SVM separation on

training data, and the subsequent data collected and classified, is shown in Figure 6.4.

Figure 6.4: SVM “hyperplane” separation of 128-sample windows

A One-Class SVM approach utilizes only breathing training data, since non-breathing training

data is infeasible in practice, and was compared against the Multi-Class SVM approach as well as

two additional statistical approaches that also allow training only on the breathing class. First, a X 2

test on the standard deviation of each window was compared against the mean standard deviation

of a training set of window standard deviations. This test assumes that the subject is breathing as

the null hypothesis, and if a sampled window standard deviation is found to be an outlier from this

training set, the null hypothesis is rejected and it is predicted that the subject is not breathing. The

second approach is a t-test on the mean of each window compared against the mean of a training set

of windows. Here, the null hypothesis assumed a 0-mean window after subtracting the training set

mean from the window sample mean, essentially indicating that the sampled mean deviates from the
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breathing sampled mean (such that breathing is unlikely). Since it is assumed that non-breathing

would produce only 0-mean noise, a null hypothesis of non-breathing can be established here. If

the mean is found not to deviate from a 0-mean, the null hypothesis is rejected and breathing is

inferred.

These tests were run for various window sizes: 128, 64, 32, and 16. For each of these window

sizes, different sized training sets were used as well: 25% of the data set, 12.5% of the data set, and

6.75% of the data set. In general, SVM outperforms the predictive capability of the X 2 test alone

for all window and testing set configurations. Further, the X 2 test outperforms the t-test, which is

explained by the stronger FDR classification metric on the standard deviation of the observed data.

With small windows and a reasonably sized training set consisting of only breathing data, and the

addition of the X 2 p value as a separable feature, a One-Class SVM was run with approximately

70% accuracy, just under that of the Multi-Class SVM classifier. The One-Class SVM is encouraging

in that it does not require non-breathing training data to classify, and performs well with smaller

window sizes. This means that detection of breathing and non-breathing states can be done within 4

seconds (given the window size and read rate of the interrogator), following a short training period.

6.2.1 Effectiveness of One-Class Classifiers for Anomaly Detection

As described in Section 6.2, the One-Class Support Vector Machine performed comparably to its

Two-Class counterpart, indicating potential usefulness of One-Class anomaly detectors for classify-

ing real-time RFID biomedical data from these passive smart textiles. Several One- and Two-Class

classifiers were employed against the data collected to compare accuracy over a number of configu-

rations. Specifically, a One- and Two-Class SVM, a Two-Class Decision Tree, a One- and Two-Class

Least Squares Anomaly Detector135, and a One-Class Elliptic Envelope Anomaly Detector.

The data collected (at between 30-55 Hz) was filtered via a Kalman Filter126, aggregated into

window sizes, and the mean and standard deviation of each window was taken to create new data

sets. Window sizes of 30-600 in increments of 30 were taken. The windows either proceeded without

any overlap, or a 50% sliding window overlap was utilized for each window configuration. Further,

different numbers of the first windows encountered were used as training data, from 10% to 90%
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in increments of 10%. It is worth noting that these percentages would inform the amount of time

used for training observations in production usage, as one cannot assign a percentage of data when

the device is intended for continuous use. In collecting this data, the SimBaby was deployed and

programmed to breathe for one minute at a rate of 28 per minute, then to cease respiration for one

minute, before repeating.

For many configurations, we observed a correlation between the training set size and Receiver

Operating Characteristic (ROC) Area Under the Curve (AUC), as well as between the window

size and the accuracy. For One-Class classifiers, this can be met by allowing the subject to wear

the device under normal and observed conditions for a specified period of time before entering the

classification phase. Because the subject is being observed, the class can be assumed to be the

normal (i.e., breathing) state. There was a stronger correlation between the window size and the

accuracy, particularly above a window size of 300 (approximately 5-10 seconds at 30-55 Hz). For

example, the ROC AUC results for various window size and training set configurations for the One-

Class Least Square Anomaly Detector and for the One-Class Support Vector Machine are given in

Figure 6.5.

Figure 6.5: One-Class Support Vector Machine (left) and Least Square Anomaly Detector
(right) executed over each specified configuration, and ROC AUC plotted against window size.
Darker nodes, towards the upper portion of the plot, indicate larger training set sizes.

The SVM constructs a space around the supplied training class data: in this experiment, a

certain amount of breathing data from which the mean and standard deviation are computed in

various window sizes. If there are several mean/standard deviation combinations that typically
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indicate respiration, the constructed learning spaces can be disjoint. This provides flexibility for the

anomaly detector by indicating multiple “breathing” spaces rather than constructing a single convex

hull around the training data. This approach proves useful here because the standard deviation varies

more than the mean when the breathing state class changes. This is because the mean can vary

with the depth of breathing, or the proximity to the interrogator, but the individual data points

fluctuate from the mean while breathing is taking place. This intuition is confirmed by the FDR,

which predicts greater separability on the standard deviation. However, the risk of constructing

multiple learning spaces is overfitting, in which the training becomes too specified to accurately

detect anomalies. This risk motivates the study of and comparison to the other classifiers discussed

in this Section.

The SVM performed better with larger windows, likely due to the sensitivity of the standard

deviation to classification as predicted by the FDR. Although its ROC AUC also improves with

a larger training set size, even smaller training sets yield reasonable classification with window

sizes larger than 300 (approximately 5-10 seconds). By contrast, the One-Class Elliptic Envelope

constructs a single ellipse to encapsulate the training data; although its average ROC AUC is 0.59

as compared to the SVM average ROC AUC of 0.71, it performs better with larger training sets

without requiring larger windows. It is useful, then, for detecting potential anomalies after a short

period of time. This has the potential to inform the classifiers that rely on longer window periods,

such as the SVM, using and ensemble learning approach.

The Least Squares Anomaly detector performed better with larger windows, even with moderate

training set sizes, and performed comparably to the SVM with an average ROC AUC of 0.69. Finally,

the Moving Average Classifier resulted in an average ROC AUC of 0.73, but its performance was

scattered among the various window and training configurations. This is likely because this Moving

Average Classifier gives equal weight to anomalies detected in either statistical feature chosen (in

this case, mean and standard deviation). The classifier could be weighted to assign preference to

anomalies detected in the window standard deviation.
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6.3 Respiratory State Classification

Classification via Hypothesis Testing on Spectral Features

Using the spectral maximum on a 0.5 second window of data, we collect 20 seconds of training data,

observe the mean and standard deviation of the spectral maxima, and run a Student-t hypothesis

test on subsequent windows of data. It is assumed that normal breathing is taking place during the

20 second training period, but require no manual intervention for data labeling. The null hypothesis

states that this normal respiration continues to take place. If the spectral maximum is a 95% outlier

and the sample value is below the observed training mean (because abnormally deep breaths are not

under consideration), a cessation of respiration has taken place. Every cessation is not necessarily

an apnea condition, because a temporary pause between inspiration and expiration is normal; rather

sleep apnea is defined as a reduction in respiratory activity by 95% for a period of 10 seconds or

more136. To avoid classifying temporary pauses between breaths, an arbitrary limit less than or

equal to the 10 second threshold was chosen to consider an apnea detection, and this detection

should continue beyond the 10 second threshold. Because the mechanical SimBaby respiratory

delays are approximately 0.5 seconds between inspiration and expiration, the expiration-inspiration

delay is defined by the respiratory rate, and a minimum respiratory rate of 15 was used, a 4 second

threshold was used in this study. An example t-test classification is shown in Figure 6.6.

We chose not to omit small magnitude samples in the training set, although these are likely to be

non-breathing “pauses” between inspiration and expiration, because this would require a threshold

or percentile and would perturb the training sample set. It is likely that a certain percentile of

training data represents these pauses, and this could be trivially considered for training samples in

which respiratory activity is particularly sparse.

Using Temporal Information from Posterior Classification Probabilities

Another method to improve classification results is to utilize the temporal relationship within the

data. Perceptron-based separation provides a line for classifying data into two or more classes. This

line is rigid in N-dimensional (often linear) space, and hence only the magnitude of the data, and

not temporal information, is considered. Platt scaling is a technique that takes the output of a
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Figure 6.6: Using a t-test on a SimBaby mannequin programmed to cease respiratory activity
from 120-180 seconds, breathing at a rate of 15 from 60-120 and 180-240 seconds, and breathing
at a rate of 30 from 0-60 and 240-300 seconds; a 20 second training period was used, and
detection of respiratory cessation is denoted in red

classification model and transforms it into a class based probability distribution137. This technique

is applied in the Two-Class SVM in order to correlate the distance of a data point from the separating

margin to the probability of the data point belonging to a class. The RSSI readings obtained from the

Bellyband is temporally related and temporal trends are captured by using sub-sections of training

data to generate linear SVMs. These SVMs prevent the Two-Class SVM from misclassifying data

points collected during a transition period, such as between breaths for respiration monitoring. By

using a soft threshold or sigmoid function, we can observe the decrease in posterior classification

probability, warning of a possible upcoming change in classification. We inject synthetic anomalies

as described in Chapter 5 and fit a Two-Class SVM perceptron, with the results fit into a probability

distribution using logistic regression137. Overall, using probabilistic classification and cross-validated

training sets, the ROC AUC for an 8-second window and 25% training set improved to 0.94; the

precision/recall AUC was 0.94 (see Figure 12.4).
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6.4 Uterine State Classification

Uterine monitoring during labor and delivery is typically done via a visual plot, which we provide

as shown in Figure 4.2. However, for purposes of telemedicine, mobility, and automated detection,

it is desirable to classify uterine strain gauge data as we did with respiratory data.

To do this, we perform unsupervised classification using a Markov chain. This is a feasible

approach over traditional classification because we are classifying coarse-grained changes in the data

as opposed to rapid and brief movements as found with respiratory movement. A Markov model

can be applied to establish two broad classifications of data within the window, accounting for their

temporal progression as well as magnitude. We construct a Hidden Markov Model using a brief

period of “training data” which is assumed to be semi-unsupervised, unlabeled, “normal” activity.

We then observed the benefit of fusing the tag velocity measurement v with the RSSI power ζ

in Chapter 8 when estimating the start and duration of strain gauge activity in the presence of

noise artifacts. The classification feature set utilizes this relationship and is given by the tuple

X = [d, r, ζ, v] where d is a vector of Doppler measures, r is a vector of RSSI normalized to the

window mean, ζ is the PRx,reader defined in Chapter 5, and v is the tag velocity computed by the

phase and interpolated for any missing values due to changes in frequency, antenna, or responding

tag. An example unsupervised Markov switching model classification is given in Figure 6.7.

As this model is the most unsupervised approach taken in this work, its results are not perfectly

accurate; rather, the classifications rapidly switch between the classifications between two data

samples. However, these classifications can be used as a higher-order feature that can itself be

classified using k-means clustering, determining which “peak widths” are noise and which should

be merged together into a single movement action. This effort is described in Chapter 10. For

classification purposes, however, we build upon this Markov model for temporally-aware classification

of RFID data by constructing the MCMC method, which was discussed in Chapter 5 as a method to

test whether one or more data distributions exist in a small window of data. This is a useful method

to identify periods of time when no band strain activity is taking place. In the case of uterine

monitoring, the state classes are reversed from the respiratory monitoring case: with respiratory
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Figure 6.7: Result of a Markov Switching Model applied to RFID data for unsupervised
classification of wearer state
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monitoring, the primary class is “breathing,” or active stretching of the band and knitted antenna.

The anomaly class is an apnea case. During labor and delivery, the common case is a stationary

band about the abdomen, and the rare case being classified is a uterine contraction, which should

stretch the band. This changes the nature of classifier training, and we instead test the hypothesis

that only a single Gaussian distribution exists in the data as white noise using MCMC.

MCMC is a probabilistic model that uses randomness to walk the search space, and is not a

random algorithm in terms of the data itself. From the MCMC, we determine whether the rate

of random-walking is greater or equal than the random-warp probability on convergent solutions.

If the rate is greater, the simulation is not converging even on local optima, and the data is a

single distribution likely to be white noise across the spectrum. Even if the MCMC simulation does

converge, we can inspect the properties of the two distributions identified, because the simulation

can assign individual data points to each of the distributions found. The “residual distribution”

left over after removing the likely “white noise” data should be oscillatory in nature, reflecting the

stretching nature of the band, with some of the noise artifact from the other distribution removed.

This residual distribution is useful for determining changing environmental conditions not related

to the activity being monitored, so that changes in the environment can be detected for retraining

conditions (see Section 6.6).

6.5 Ambient Motion Detection and Cancellation

For detection of ambient, non-stretching motion of the Bellyband, we measure the change in channel-

normalized RSSI over time by a Processor module that computes its slope over small time windows.

Each data window is filtered using LOWESS regression filtering127, and the slope of the filtered data

is used as a classification input. An ANN138 is trained on the resulting slope data and tag velocity

in order to classify those movements that are due to ambient artifacts as opposed to more rapid and

oscillatory respiratory movement. These sudden movements can then be removed or disregarded in

subsequent respiratory rate processing.
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6.6 Training and Re-Training

One goal of this effort was to perform classification while requiring minimal or no supervised training.

We refer to the approaches outlined in this Chapter as “semi-unsupervised” because they typically

require a nominal period of time, typically 20-60 seconds, of data collection under “normal” activity.

An expert is not required to label the data nor to provide any intervention to the classifiers; rather, a

lay-person observes the subject during this period to ensure that normal respiratory activity is taking

place. During this time, training sample data are collected that define the environment, relative

distance from the interrogator (measured in physical properties of the RFID backscatter signal such

as RSSI), and, if needed, the relative depth of strain gauge activity. If these properties change, it

is necessary to re-train the classifiers, but the unsupervised nature of the classifiers means that the

lay-person might not be in the area when these conditions are observed. It is useful to automatically

determine when these retraining conditions exist, and the parameters could be useful in automatically

re-training the classifiers as well. The Markov methods described in Sections 6.3 and 6.4 provide a

useful framework to determine when it is necessary to re-train the classifiers.

The MCMC simulation attempts to fit two distributions to small (i.e., 0.5 seconds) windows of

data. When only one distribution exists, no movement is taking place with the band, which was used

to inform classification of non-moving state on both respiratory and uterine applications. However,

the MCMC simulation also determines the parameters of the two distributions such as mean and

standard deviation, as well as which data points are more likely to reside in which distribution.

As the window slides in time, the number of data points belonging to each distribution should

adjust as more motion artifact is captured in the data window. One of the two distributions should

remain mostly stationary except for misclassifications at the boundary by the MCMC simulator,

as one of the two distributions is Gaussian white noise in which no motion is captured. The other

“residual” distribution, which only exists when movement artifacts are captured, has parameters

that change as the window moves. As more data points are captured into this residual distribution,

the mean of that distribution increases, and then subsequently decreases as the band is relaxed

back to its original shape. If the range of the recent residual distribution mean has fallen below
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three standard deviations from that observed during the training period, movement activity depth,

rate, or other environmental factors have changed (such as obstructing the path between the tag

and interrogator). In effect, this classifier determines when the dynamic range of the band has

diminished even after separating noise from the signal. Retraining conditions are observed as shown

in Figure 6.8, which was collected using the programmable mannequin SimBaby, programmed to

cease respiratory activity from 120-180 seconds. Shallow breaths are also captured outside of this

range; they are left here because they correctly align with the data captured, and can be filtered

depending on the biological application (i.e., by alerting after a certain period of inactivity for the

respiratory application, or after a certain period of activity for the uterine monitoring application).

Figure 6.8: Retraining conditions are indicated in red along the X-axis of the mean of the
residual distribution after removing noise by an MCMC simulation
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Chapter 7: Activity Rate Estimation

The classification approach taken in Section 6 can be useful for classifying anomalies such as cessation

of breathing, or detecting a uterine contraction. However, it is also useful to determine the rate of

the observed activity. To do this, a Gaussian filter is applied to the data, followed by an FFT.

The peak frequencies observed from the FFT are extracted and passed to an Inverse FFT (IFFT)

to reconstruct the data with less noise in the signal. The weighted average, or “spectral centroid”

is found by identifying the global or local maxima magnitudes within the FFT and computing a

weighted average around a specified width w, as shown in Equation 7.1:

k+w∑
i=k−w

fiFi

k+w∑
i=k−w

Fi

(7.1)

for FFT local maxima magnitude F at frequency bin i, and corresponding frequency f . The

frequency bin k is chosen by k = argmaxF . Because spectral energy for respiratory analysis tends

to be concentrated at lower frequencies, the two or more frequencies with maximum FFT magnitude

are likely to be close together without being immediate neighbors or within the spectral window w.

Because the sliding window will better center these competing oscillations at different times, it is

desirable to capture the one(s) most centered in the current time window. To account for this, K is

first chosen as a set of locally maximum frequencies relative to the initial choice of k, as shown in

Equation 7.2. Subsequently, k is selected as shown in Equation 7.3, where p is the spectral phase of

the corresponding FFT frequency. The spectral centroid is used to predict the rate of RFID antenna

stretching, as shown in Figure 7.1.

K = ∀x∈F |F [x] ≥ 1

2
F [k] (7.2)
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k = argmin
k∈K
|p[k] = min p[K] (7.3)

Spectral density rate estimation suffers from a few challenges, which we address in this Chapter

and via sensor fusion, discussed in Chapters 8 and 9. First, spectral analysis of Gaussian white noise

theoretically presents a uniform power distribution; however, in practice, some perturbations are

possible, and non-Gaussian interference will contribute to the observed spectral density. Second, the

windows considered are small (i.e., 0.5 seconds), and may not encompass a full oscillatory respiration.

Parts of these artifacts will still be extracted via the FFT for a sufficiently sized window, but it

cannot be known for sure what size window will suffice, and lengthing the window causes a lag in

convergence to the true respiratory rate. For comparison purposes, we augment the FFT with a

discrete approach that considers 0.2 second windows of data and takes the first order difference,

counting the rate at which these small tangent lines change the sign of their slope.

The Fourier Transform frequency resolution is dependent upon the size of the window and the

sampling frequency. The sampling frequency of 20-100 Hz is higher than the biological phenomenon

being observed; however, it is desirable to use a short window for purposes of real-time estimation.

The small window and relatively high frequency limits the number of frequency bins available, and

lowers the frequency resolution by increasing the spacing between subsequent frequency transform

bins. The spectral centroid interpolation method captures spectral information from adjacent fre-

quency bins by weighting via their relative magnitudes. Quinn139 improves upon spectral estimation

with asymptotic mean square error proportional to the inverse cube of the window size, and then

combines two such estimators using the previous and the subsequent frequency bin by minimizing

the covariance matrix140.

The periodic rate of a physical phenomenon can be estimated from successive sliding windows of

data by using spectral analysis. The result is a series of frequency estimates from which the overall

rate is inferred. Quinn’s interpolation method140 reduces variance about the true frequency to near

the Cramér Rao bound; however, significant noise artifacts in the data due to multipathing and

environmental changes cause fluctuations in individual frequency estimates. Because the window
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size is small, even a small variance in the estimated frequency lead to large rate estimation errors.

To overcome non-stationary perturbations in the estimated frequency over time caused by static

and dynamic environmental artifacts yielding multipathing, a Hidden Markov Model may be applied

to identify more likely progressions of identified frequencies in which transitions among a stationary

set of frequencies is more probable141. The Markov Chain is initialized to assume that the frequency

track is a random walk whose largest possible departure is bounded142, while larger observed steps

are discounted as possible outcomes. The likelihood of each observed frequency estimate, then, is

proportional to that frequency’s contribution to the overall spectral magnitude. The Baum-Welch

algorithm applies Bayesian inference to obtain the most likely current frequency given the current

observation and historical “track” of frequencies. The algorithm provides an iterative approach to

frequency estimation, as the track probabilities evolve over time and thus depend only upon the

most recently observed frequency and the immediate predecessor. Because historical frequencies are

sometimes discarded, the true track can become lost if a significant frequency is inferred to be a

noise artifact. This leads to a situation in which all frequency estimates are equiprobable or could

even sum to 0. When this occurs, the entire track is re-initialized and begins to re-converge from

the current starting point; this results in higher frequency estimate variance during this period. The

estimates are not used during these convergence periods. When algorithm convergence can introduce

such estimation errors, or when environmental factors lead to algorithm retraining conditions (see

Section 6.6), other estimation approaches are applied and fused, as discussed in Chapter 9.

Quinn’s frequency interpolation140 of Fourier transformed spectral respiratory data is used to

identify locally optimal frequency estimates of the current short-time window, and the resulting

interpolated frequencies and magnitudes are applied to a Hidden Markov Model to track frequency

progression over time141;142 to obtain a maximally likely frequency estimate. The resulting algorithm

for interpolated frequency estimation using a Markov chain is given in Appendix A.

Chapter 7: Rate Estimation
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Figure 7.1: Bellyband data collected and filtered to estimate the target respiration frequency
of 0.5 Hz (top), and tocodynamometer data simultaneously collected and filtered from the
same mannequin, also estimating the same target respiration frequency of 0.5 Hz (bottom); the
IFFT average yielded a predicted rate of 30.01 respirations per minute (top), as opposed to an
estimated ground truth of 31.67 respirations per minute (bottom)

Chapter 7: Rate Estimation
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Chapter 8: Single-Sensor Multi-Measure Fusion

Spectral analysis of the signal as shown in Chapter 7 assumes that the signal is mostly “clean;”

interference is likely to be dominated by a movement frequency, but unrelated “ambient” movement

artifacts interfere with the dominant frequency selection, especially if the window under consideration

is short as is conducive to real-time estimation. One näıve approach to separating oscillatory signal

from ambient motion artifacts is to remove trendlines from short time windows of the data. Indeed,

this has been effective in removing some such artifacts; however, short bursts and circular movements

may not be identified from the signal in this way. However, perturbations in the tag velocity v

(Equation 4.2) and signal strength ζ (Equation 4.3) can be fused and classified into activity type,

including knit antenna stretch. We begin by computing δ, the first-order difference of the correlation

between short windows of the tag velocity and signal strength (see Equation 8.1).

δ = corr(∆ζ,∆v) (8.1)

As the band stretches, the tag velocity and signal strength are correlated, resulting in well-defined

perturbations in the correlation measure during these periods. A rolling RMS is computed from the

short-time δ series, and the resulting measure is converted to a square-wave binary classifier by

identifying the inflection points of the rolling RMS (identified as the zero-crossings of the second-

order difference). An example of such a classification is shown in Figure 8.1.
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Figure 8.1: Correlating the tag velocity and signal strength (top) to form a binary classifier
of strain gauge motion artifacts (bottom) by locating the inflection points of a rolling RMS
measure (middle) against δ

Chapter 8: Single-Sensor Fusion
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Chapter 9: Multi-Sensor Fusion

The rate estimation using spectral analysis presented in Chapter 7 accurately computes the rate

of band stretching (i.e., respiratory rate) using interpolated140 Fourier Transform peak frequencies

de-noised in the time domain using a Markov Chain141;142. The accuracy of the estimate varies with

the length of the window being considered; however, a longer window also concedes the assumption

that respiratory activity is periodic, when in practice it is oscillatory with small perturbations in

the sinusoidal period. Therefore, it is necessary to augment the spectral estimate with additional

time-domain measures to detect small shifts in period. In this chapter, we discuss and fuse these

additional measures for a unified rate estimation that improves upon the accuracy of the spectral

analysis alone.

Our fusion approach25 is based on Expectation Maximization of a multivariate Gaussian Mixture

Model (GMM) constructed from point estimates from each measurement estimate. It is assumed that

each measure is subject to both environmental (for example, multipath perturbations or a moving

subject) and process estimate (for example, spectral leakage or a spurious peak) noise that must

be considered stochastically. However, each measure estimate is informative of the true underlying

measurement, and can be modeled according to their relative historical variances. The variances

of each measure should be about equal even during subject movement, as the underlying true

measure should vary with each individual measurement if they are completely correct. Therefore,

the variance of the recent history of each measure is used as an estimate of uncertainty of the current

point estimate. The point estimates themselves are used as the means of Gaussian distributions with

variance equal to the recent historical variance. These are fused by constructing a GMM from these

individual Gaussian models, with a full covariance matrix computed to consider which measures

vary most closely together to better inform the fused result.

The likelihood L of each measure is computed against the GMM, and the final fused estimate y

is a weighted average of the individual measure point estimates µi for each measure i, as shown in
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Figure 9.1: Results from the Expectation Maximization sensor fusion algorithm removing
noise artifacts from individual measurement estimates

Equation 9.1. The vector of fused estimates y is then filtered using a Kalman filter to obtain the

final tracked estimate. By incorporating the recent variance of the measure estimate, this approach

can improve estimation accuracy even when using only a single measurement estimate.

y =

∑n
i=1 µi(logL)−1∑n
i=1(logL)−1

(9.1)

An example sensor fusion is shown in Figure 9.1, in which a human subject breathed at a rate of

30 per minute followed by a rate of 15 per minute, for one minute intervals. Here, peak detection and

spectral analysis are fused with their denoised and Markov Chain tracked counterparts (in which

signal is sacrificed to reduce the signal to noise ratio).

9.1 Fusion Framework Architecture

To facilitate the rapid prototyping and deployment of wearable intelligent measurement algorithms,

we designed a Fusion Framework package that interfaces with the secure data and physical layer,

synthesizing data from heterogeneous IoT sensors and measurement algorithms to compute a fused
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estimate. The reference architecture for this framework is shown in Figure 9.2, and includes the

following modules:

• Measure: The Measure module implements an estimation algorithm using data that is au-

tomatically provided to it. This abstraction enables the rapid prototyping of filtering and

estimation approaches independently of physical layer details. This module is extended by any

number of subclasses, each of which implements a single algorithm with only a single required

process() method.

• Perturber: The Perturber module is an optional module and implemented by one or more

subclasses that simulates the effects of fading due to multipath, shadowing, or changing envi-

ronmental conditions.

• Fuser: The Fuser module collects recent histories from the Measure modules and applies

a multisensor fusion algorithm to compute a fused estimate from the noisy measures and

underlying data.

• GroundTruth: The GroundTruth module provides time-specific error calculations against a

known record, if one exists.

• Sensor: The Sensor module defines the fusion configuration parameters, including which

measurement algorithms to apply, if and how to perturb the input data, what ground truth to

apply for accuracy measurement, and how to fuse those measurements together. The Sensor

module is equivalent to a real-time Processor module used for real-time classification (see

Section 6.1).

Chapter 9: Multi-Sensor Fusion 9.1 Fusion Framework Architecture
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Figure 9.2: An architecture diagram of the Fusion Framework that interfaces with the secure
data collection and interrogator driver module and respiratory rate measure fusion algorithm
modules
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Chapter 10: Prediction of Interbreath Interval

We classify the beginning and end of strain-gauge activity using the Markov Switching model devel-

oped in Section 6.4 (see Figure 8.1) and the correlated features defined in Chapter 8 (see Figure 6.7).

Once respiratory activity is accurately classified for an infant, the interbreath intervals (IBI) between

each breath can be used to probabilistically model a predictive estimate of the next breath. This is

useful both as a predictor of upcoming respiratory activity for use as a closed-loop feedback system

for respiratory therapy devices, and as a predictor of apnea due to predictable patterns in the IBI

variance (namely, that IBI variance becomes unstable immediately before an apnea condition)143.

Interbreath interval in infants has been modeled by a decaying power law144, with the associated

tail of this model fit to a log-normal distribution143 and analyzed using an autoregressive model143.

The log-normal probability density function modeled from the power law IBI relationship is given

in Equation 10.1143, for IBI history H at epoch k, time t, breath timestamp u, and fitted AR(p)

model µ of recent IBI times.

f(t|Hk) = (2πσ2(t− uk)2)−
1
2 e−0.5×ln(t−uk)−µ(Hk)2σ−2

(10.1)

A programmable mannequin SimBaby was used to breathe at a pre-programmed rate, with clas-

sified respiratory activity shown in Figure 10.1. Even when breathing at a constant rate, variations

are expected in the interbreath interval. As before, mechanical artifacts, environmental changes,

and process variance all lead to noise inherent in the signal. Therefore, the observed IBI and the

modeled prediction are each somewhat inaccurate but informative.

To more accurately estimate the observed interbreath interval, the generated square wave is

amended with k-Nearest Neighbor clustering to detect the peak widths in an unsupervised manner.

Outlier peaks which are likely to be artifacts are merged with their largest neighboring plateau,

whether it is a “high” peak or a “low” peak. To incorporate the noisy current observation with
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Figure 10.1: Respiratory activity classified as a square wave for interbreath interval prediction

the prior predictive estimate into a fused estimate for use in IBI modeling of the next predictive

IBI, we construct an Affine Projection adaptive filter145 from the observed IBI xt, predicted IBI yt,

and error et = xt − yt at epoch t. At each epoch t, the observed value xt−1 and prior IBI history

H are used to predict the next IBI yt. An example of predictive convergence of the estimated IBI

values according to the probabilistic model143, and the convergence of the adaptive filter are shown

in Figure 10.2.
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Figure 10.2: Convergence of adaptive filtering algorithm using an autoregressive model of
probabilistically estimated IBI according to a log-normal historical distribution
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Part III

Experimental Protocol
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Chapter 11: Experimental Validation and Human Experimental Protocol

We designed an experimental protocol to evaluate and compare the effectiveness of our smart gar-

ment designs as well as the effectiveness of our statistical processing approaches. As discussed in

Chapter 2, a Laerdal SimBaby programmable mannequin and a manually actuated pregnant man-

nequin are used for laboratory testing of the software and physical sensors. For comparison to

ground truth, a respiratory monitoring device is used to establish baseline respiratory activity, and

a Philips 50XM Tocodynamometer is used as a pressure sensor during uterine monitoring and during

mannequin simulations and experimentation. The Tocodynamometer used is shown in Figure 11.1.

The SimBaby and pregnant mannequin can be seen in Figure 1.3, and an example experimental data

collection from the RFID Bellyband and Tocodynamometer from a pregnant mannequin is shown

in Figure 4.1, with post-filtering results shown in Figure 4.2. In all cases, the RFID interrogator

antenna is positioned between 1.5 and 3 feet from the Bellyband tag, and oriented to point toward

the chip and knit antenna.

Figure 11.1: A Philips 50XM Tocodynamometer

Simulated infant respiratory experimentation consisted of applying a smart-fabric Bellyband

to the abdominal area of the SimBaby, and the Laerdal SimBaby software (see Figure 11.2) pre-

programmed via a scenario to automatically iterate between respiratory patterns at defined intervals.

This enables the forced presentation of biologically undesirable phenomena such as apnea.

For classification experiments, a SimBaby scenario was created that oscillated between periods
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of respiratory activity at a rate of approximately 30 breaths per minute for a period of one minute,

followed by a period of one minute without respiratory activity, repeating for a predefined period of

at least 3 minutes. For respiratory rate estimation experiments, this scenario was modified slightly to

incorporate different respiratory rates for pre-defined intervals. As a canonical example, the SimBaby

was programmed to breathe at a rate of 30 per minute for one minute, followed by a rate of 15 per

minute for 1 minute, followed by a one-minute prolonged apnea condition of no respiratory activity,

followed by 15 per minute for 1 minute, and, finally, 30 per minute for 1 minute. Although the

SimBaby does have some small local variation in its respiratory activity even with a pre-programmed

rate, the mannequin does actuate the correct number of times in each programmed period. The

estimator Fusion Framework described in Chapter 9 imports a ground truth configuration for error

estimation that aligns with the scenario used by the SimBaby. Movement artifacts were simulated

via scripted manual movements of the SimBaby in space by pulling the surface upon which the

SimBaby rested through space, out of the way of the interrogation equipment.

Figure 11.2: The SimBaby control software (right) configuring the automated respiratory
patterns of the SimBaby mannequin (left), with RFID monitoring visualization depicted (center)

Simulated uterine experimentation consisted of applying a smart-fabric Bellyband to the abdom-
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inal area of an inflatable mannequin as well as applying a pressure transducer of a tocodynamometer

to the same area, and manually inflating a mannequin about the abdominal area at some approx-

imately periodic rate. Data collection modules for the Bellyband and for the tocodynamometer,

developed as described in Section 4.3, allowed for simultaneous data collection, storage, and visual-

ization of both sensors.

Both the tocodynamometer and the RFID RSSI measurement are reported as 8-bit integers.

Because the values are filtered according to a desired filtering strategy, such as a multi-pass moving

average like a Gaussian filter, or by a Kalman filter, they may present with decimal resolution. An

example dataset collected from the pregnant mannequin using both the Tocodynamometer and the

RFID-based Bellyband is shown in Figure 11.3

Figure 11.3: Tocodynamometer data collected from a programmable mannequin, at a range of
approximately 3 feet (top), and Bellyband data simultaneously collected and filtered (bottom)

An example respiratory rate estimation was performed using the programmable mannequin via

the spectral centroid method (Equation 7.1). This was calculated on both the tocodynamometer

data and the simultaneously collected RFID Bellyband data. The mannequin was actuated at a rate

of 30 stretches per minute, at a distance of approximately 3 feet from the interrogator. Although

the spectral magnitude was spread out across multiple frequency bins in the case of the RFID

Bellyband after low-pass filtering, the magnitudes themselves were preserved by the reconstruction

Chapter 11: Experimental Protocols
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of their respective spectral centroids. An example trial is shown in Figure 7.1.

11.1 Human Subjects Experimentation

We programmed the Laerdal SimBaby with biologically infeasible scripts to obtain known ground

truth for simulated experimentation. For example, we programmed the SimBaby to breathe at a

known rate for a specified period of time, followed by a specified and prolonged duration of apnea.

This scripted mannequin experimentation provided several benefits for this study: first, biologically

infeasible or experimentally unethical scenarios such as prolonged apnea periods can be readily sim-

ulated to measure classification accuracy. Second, experimental runs can be repeated in a consistent

way, allowing for verification of experimental results across several data collections and varying en-

vironmental conditions. However, the mannequin movements do not purely mimic natural biological

movements, and the internals of the SimBaby are mostly metal components that do not approxi-

mate the water-based composition of the human body. As a result, the RF measurements, and even

the ground-truth pressure measurements of the tocodynamometer, are not a prefect recreation of

biological phenomena.

Institutional Review Board (IRB) protocols were submitted and accepted in support of this effort,

and an additional protocol was submitted in indirect support of this project1. The two primary

protocols deal with infant and uterine monitoring using the Bellyband, and the third protocol

addresses heart and respiratory combined monitoring of adults (and, eventually, infants). The

infant and uterine monitoring protocols are to be carried out at Hahnemann Hospital at the Drexel

University College of Medicine campus, and the heart and respiratory protocol can be implemented

in the research lab on the Drexel University main campus.

We utilize the REDCap secure research data repository for housing data collected from human

subjects. REDCap is typically intended for manual input of observed or survey data, so a software

module was integrated with the data collection system described in Section 4.2 to provide real-

time data input to REDCap via its RESTful API. Additionally, REDCap was configured to accept

Comma Separated Value (CSV) files containing batch database exports post-capture.

1The Drexel University IRB protocol numbers related to this effort are 1504003601, 1504003602, and 1604004440,
and their approvals and consent information can be found in Appendix C.
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For human data collection, it is recommended to keep the interrogator antenna and human

subject separated by 50 cm, which results in a maximum peak Specific Absorption Rate (SAR)

of 0.25 W/kg, within the maximum SAR of 0.8 W/kg146. Additionally, the FCC publishes the

Maximum Permissible Exposure (MPE)147 of 1500−1f mW/cm2 for frequency f in MHz on average

over a period of 30 minutes. In the 902-928 MHz band, this equates to a minimum MPE of 0.6

mW/cm2. An RF power meter confirmed that RF power P received was well within these limits at

all times at distances of 50 cm to 100 cm, near the theoretical value of 0.03 mW/cm2, computed via

Equation 11.1.

Preceived = Ptransmitted[(4πr
2)−1]

Preceived = (1 W )[(4π × (0.52 m2))−1]

Preceived = 0.3 W/m2 = 0.03 mW/cm2

(11.1)

For adults and infants, the Bellyband is deployed about the abdominal area, and the RFID

interrogator antenna is positioned via a rotating tripod mount to orient toward the knit antenna

and at a distance of at least 50 cm from any part of the body. This distance is measured and the

RF power measured with an RF power meter to ensure it is within the MPE maximum for the

frequency band in use. Data are collected in 3 minute intervals for up to a period of 15 minutes.

Ground truth data is extracted depending on what is available at the facility, either via a commercial

respiratory monitor, hospital ventilator, and/or manually using a metronome and taking note of

physical phenomena.
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Part IV

Results
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Chapter 12: Experimental Results

12.1 Ambient Motion and Re-Training Detection

In Chapter 6, we discussed an approach for classifying band stretch state as well as baseline “training”

(in Section 6.6) parameters from which those classifications are made. We also note that ambient

motion artifacts (in Section 6.5) can alter these baseline conditions, causing them to be recalculated

or entry into a brief semi-unsupervised state.

MCMC simulation is particularly useful for uterine monitoring since it is entirely unsupervised,

and because the anomaly class is the motion-based class, which hinders our semi-unsupervised

approach that assumes that oscillatory motion is taking place like in respiratory. It is also applicable

to the detection of stretching movements involved with respiratory activity, and in detecting shifts in

baseline training conditions. This is because the MCMC simulation was structured to separate short

windows of data into one or two probabilistic distributions. If the solution failed to converge, this

is a potential indicator that stretching motion is not taking place during that window, because the

band is left stationary in whatever position it held previously. If the simulation does converge upon

two candidate distributions, those two distributions can be evaluated for their properties and their

evolution over time, including the mean, standard deviation, and relative number of data points fit

to that distribution from the data window under inspection.

Example MCMC simulation results are given in the plots of Figures 12.1 through 12.2, in which

a human subject made abdominal motions at a given rate (10, 15, 20, and varied, respectively) for

30 seconds, followed by a period of non-movement, and repeating. The periods of non-motion are

found at time periods 30-60 seconds and 90-120 seconds.
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Figure 12.1: MCMC simulations for a human trial at a respiratory rate of 10 per minute
(top) and 15 per minute (bottom) with brief cessations: each plot depicts the “low magnitude”
distribution percentage of data or “weight,” mean and standard deviation, and the residual
“high magnitude” distribution mean and standard deviation; respiration is used to simulate
band stretching activity in lieu of testing in active labor and delivery, and stationary classes are
denoted in blue across the bottom of the lower plot
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Figure 12.2: MCMC simulations for a human trial at a respiratory rate of 20 per minute
(top) and a varying rate (bottom) with brief cessations: each plot depicts the “low magnitude”
distribution percentage of data or “weight,” mean and standard deviation, and the residual
“high magnitude” distribution mean and standard deviation; respiration is used to simulate
band stretching activity in lieu of testing in active labor and delivery, and stationary classes are
denoted in blue across the bottom of the lower plot

The “weight” measurement indicates the number of data points classified into each of the two

distributions, if the MCMC simulation converged upon a fit of data into those distributions. If no
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such solution was identified, the weight is returned as 0 and the entire distribution is assumed to

be a noise component. This is generally identified in between breath periods and during periods

of apnea, as shown in the plots of Figures 12.1 through 12.2. However, shallow breaths, noise,

ambient motion artifacts, and the probabilistic nature of the MCMC simulation may result in a

false classification of only a single distribution. This problem is exacerbated by the small duration

of the data window used (i.e., 0.5 seconds), in which a portion of a breath could be conflated as

outlier points fitting into a single Gaussian distribution. This simulation will be useful in informing

the band state classification algorithm results, described in Section 12.2.

Additional MCMC simulation results are utilized to detect retraining conditions. If the mean or

standard deviation of the simulated distributions shifts over time, this could indicate a fundamental

change in the band state, such as ambient movement or a change in environmental conditions,

requiring a new semi-unsupervised baseline training. Training is semi-unsupervised in the sense

that an expert is not needed to monitor data collection from the band; however, it is assumed that

a brief period (i.e., 30 seconds) of “normal” activity is collected at the start of the observation to

support the establishment of baseline environmental conditions.

Retraining conditions are also indicated by the introduction of ambient motion artifacts. In this

case, the retraining state could be in the form of automated adjustment of baseline parameters,

or calibration of collected data to remove the artifact. Using LOESS filtering, we are able to track

shifts in the mean of oscillatory patterns such as respiration due to ambient motion artifacts, such as

the sudden movement during breathing seen in Figure 12.3. By tracking the change in this filtered

mean and its inflection points over short windows, we are able to detect the onset, duration, and

magnitude of such shifts. This approach improved ambient motion classification from ≈86% using

an Artificial Neural Network to 95% using LOWESS filtering with a slope threshold, and eliminated

the need to train the neural network.
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Figure 12.3: Sample respiratory data from a programmable mannequin indicating a sudden
ambient movement after 60 seconds

12.2 Activity State Classification

Classification of respiratory activity is computed using the features extracted in Chapter 5, according

to the algorithms described in Chapter 6, in order to determine the instantaneous band state (i.e.,

stretching or not), as well as to determine the frequency with which the band state changes and the

duration of classified stretching activity. As such, our classification detects cessation of stretching

activity for prolonged periods of time (i.e., apnea), or the resumption of stretching activity (i.e.,

a uterine contraction, or limb motion), or for brief changes in band state (i.e., the pause between

respiratory inspiration and expiration, or the duration of the breath between inspiration and expi-

ration). The latter is fused with other band measurements to estimate band stretching rate (i.e.,

respiratory rate) in Section 12.3.
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For classification of prolonged periods within a specific state, such as apnea, we perform clas-

sification of short-time windows according to the approach in Chapter 6. SVM classification using

synthetically generated anomaly (non-breathing) class data and Platt Scaling (see Section 6.3) re-

sulted in a 0.94 AUC precision-recall curve and ROC curve, as shown in Figure 12.4, an improvement

from ≈0.70 using a One-Class SVM without Platt Scaling16;17.

Figure 12.4: Receiver Operating Characteristic (ROC, left) and Precision-Recall curve (right)
for the SVM classifier with area-under-the-curve (AUC) of 0.94 in each figure.

In addition to perceptron-based classification such as the SVM, we also utilize feature-based clas-

sification using hypothesis testing on the maximum spectral magnitude observed in a Short-Time

Fourier Transform of windows of RFID data. Again, because short time windows are utilized, du-

rations between inspiration and expiration may be classified as interruptions in respiratory activity.

Apnea is defined as a reduction of respiratory activity for 10 seconds136, so we establish a threshold

of 4-10 seconds before determining that an interruption of respiratory activity has taken place1.

Using the programmable SimBaby, respiratory cessation was detected with no false positives nor

false negatives after 4 seconds, when iterating between respiratory activity at a known rate and at

a rate of 0 (cessation), as shown in the programmable rate plots in Figure 12.9. This approach was

also used on RFID data collected from an infant subject, in which each of two apnea periods were

classified.

An Analysis of Variance (ANOVA) test was utilized to quantify the identification of respiratory

1A shorter alerting threshold, i.e., 4 seconds, is used for experimental purposes.
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artifacts. It was observed that the SimBaby mannequin completes an inspiration or expiration in

≈0.5 seconds, with an average of 0.56 seconds per event. By correlating the first order difference of

the RFID received backscatter power ζ and the tag velocity v 25, we observed an RMS error from the

0.56 second ground truth of 0.57 seconds, an improvement over using ζ alone (p = 0.0001). Although

this improvement is attributable to the tag velocity, using ζ also improved significantly over using

the tag velocity for counting the number of respirations in a given period, which improved upon

respiratory rate estimation (discussed in Section 12.3). Tag velocity is used primarily in measuring

the duration of a classified band stretch action, with correlation utilized for denoising purposes.

Figure 12.5: Predictive classification between breathing and non-breathing classes using the
posterior probability trend with a programmable mannequin SimBaby alternating between
breathing at an arbitrary rate and apnea (true class depicted in red); using probabilistic clas-
sification, changes in posterior probability are correctly classified before the linear perceptron
alone would have

The hypothesis test classifier was tested with an adult human subject breathing at various rates
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as shown in with brief cessations at 30 and 90 seconds. Although the RSSI dynamic range was only

1-3 dBm of RSSI, the classifier alerted all apnea conditions (one was reported rather late), with a

false positive in each trial (except for one) at the transition point between respiration and cessation

lasting ≈1 and ≈3 seconds each, and no false negatives. These results are summarized in Table 12.1.

Table 12.1: Classification alerting times for respiratory cessation of an adult human subject

First Apnea (t=30 sec)

Detection Time

Second Apnea (t=90 sec)

Detection Time

False Positive(s)

Rate 10 37 sec 91 sec (brief), 97 sec 65-68 sec

Rate 15 45 sec 103 sec 71 sec

Rate 20 37 sec 98 sec 64 sec

Rate 30 34 sec 98 sec None

Rate Varied 39 sec 113 sec 29 sec

As discussed in Section 12.1, the MCMC simulation data distributions reveal shifts in the RFID

data properties that can indicate cessation of band stretching activity or the need for retraining

baseline conditions. Either is an event that must be alerted. To determine these conditions, a vote

among binary classifications summarized in Section 12.1 is taken. These measure a shift in the low

MCMC distribution (noise) mean or standard deviation by three times the standard deviation of the

baseline mean, a shift in the number of data points classified into the noise distribution, a change

in the Hidden Markov Model classification using the Doppler, ζ, and tag velocity, and a reduction

in the t-score confidence of the hypothesis test classifier, or a shift in the high MCMC distribution

(stretching activity) mean. If any of these measurements alert for a period of 4 consecutive seconds,

an alert is made. In the event of disagreement among the measurements, a majority vote is taken.

The result of these classifications is shown in the plots of Figures 12.6 through 12.8, and represent

the same data as that collected from the adult human subject for the hypothesis test classifier

summarized in Table 12.1. Two of the false positives are eliminated via MCMC simulation and voting

over the t-test approach alone; particularly, the t-test t-score temporal trend suggested alertable
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conditions when the binary classifier alone rejected the hypothesis when p > 0.05.

Figure 12.6: Classification using voting on multiple MCMC simulator measurements for a
human trial at a respiratory rate of 10 per minute (top) and 15 per minute (bottom) with brief
cessations: cessation periods are classified along the bottom of the plot
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Figure 12.7: Classification using voting on multiple MCMC simulator measurements for a
human trial at a respiratory rate of 20 per minute (top) and 30 per minute (bottom) with brief
cessations: cessation periods are classified along the bottom of the plot
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Figure 12.8: Classification using voting on multiple MCMC simulator measurements for a
human trial at a varying respiratory rate with brief cessations: cessation periods are classified
along the bottom of the plot

12.3 Activity Rate Estimation

Using the programmable mannequin SimBaby and the cessation t-test hypothesis testing described in

Section 12.2, respiratory rates were calculated from the number of oscillations between classification

states over a sliding window period of time. This resulted in an RMS error of ≈9 respirations per

minute, and the calculated rates over time are illustrated in the plots of Figure 12.917.
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Figure 12.9: Rate estimation over time for two experimental runs (top: stretching at 31, 0,
31, 0 per minute for 1 minute each, and bottom: stretching at 31, 15, 0, 15, 31 per minute for
1 minute each), computed as the number of actuation classifications made in the past k = 6
seconds extrapolated to a one-minute rate. Note that the plots begin after 20 seconds because
the first 20 seconds of data are reserved for training the classifier used in computing the rates.

Spectral centroid analysis and discrete peak detection approaches described in Chapter 7 were
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fused together via a weighted average by the inverse of their respective recent variances, resulting in

rate estimates as shown in Tables 12.2 and 12.3 for the same SimBaby data sets (also with k = 6

second rate estimate windows)17.

Table 12.2: Estimated and actual rates from the FFT and Slope “tangent” sensors aggregated
over each 30 seconds, in which the respiration rate oscillates between 31 and 0.

Estimated Rate FFT Rate Slope Rate True Rate

0-30 sec 26.6 23.1 31.4 31

30-60 sec 29.4 30.7 27.5 31

60-90 sec 2.4 3.2 0.6 0.0

90-120 sec 0.0 0.0 0.0 0.0

120-150 sec 24.7 34.7 17.5 31

150-180 sec 25.8 28.1 24.2 31

180-210 sec 1.1 0.6 0.4 0.0

210-240 sec 0.0 0.7 0.0 0.0

Table 12.3: Actuation rates aggregated over each 30 seconds, in which the respiration rate
oscillates between 31, 15, and 0.

Estimated Rate FFT Rate Slope Rate True Rate

0-30 sec 28.6 29.6 29.5 31

30-60 sec 29.9 30.6 28.6 31

60-90 sec 18.9 20.8 18.1 15

90-120 sec 18.9 22.4 16 15

120-150 sec 0.3 0.0 0.0 0.0

150-180 sec 0.0 0.0 0.0 0.0

180-210 sec 15.9 27.5 9.2 15

210-240 sec 17.2 27.1 11.8 15

240-270 sec 22.6 21.8 27.6 31

270-300 sec 25.2 22.6 25.2 31
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Spectral analysis was improved by reducing spectral leakage by FFT interpolation in the short-

term, and by long-term tracking the observed spectral frequency over time using a Hidden Markov

Model (HMM), as described in Chapter 7.

Indeed, the use of RFID power ζ improves upon respiratory rate estimation using the tag velocity

alone, as an overall RMS error of 1.7 respirations per minute compared to 4.2 respirations per minute

with the velocity alone; this was a significant improvement (ANOVA test p = 0.001)25.

On another adult human subject, we observed an RMS error of 11 for the Fast Fourier Transform

(FFT) alone, 78 with Quinn interpolation, 6 with HMM tracking, and 7 with Quinn interpolation

and HMM tracking25. Although Quinn interpolation was not informative in this study, we have

found it to be helpful in other measurements at best, and not destructive in the worst case due to

multisensor fusion via a Gaussian Mixture Model (GMM) as discussed in Chapter 9; moreover, we

observed that the interpolation errors introduced here were corrected via HMM tracking. GMM

fusion generally selected the best performing measure by RMS and by variance25. This selection en-

ables the measurement of RFID physical properties using multiple approaches that may be hindered

by certain environmental conditions (for example, spectral analysis being perturbed by ambient

motion), because the GMM tracks the measurements into a fused estimate, which is subsequently

tracked by a Kalman filter. An example fusion result is shown in Figure 12.10.
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Figure 12.10: Individual observed measures and their fusion over time for a human subject
breathing at a rate of approximately 30 for 30 seconds, and at a rate of approximately 15 for
30 seconds
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Chapter 13: Conclusion

In this effort, we developed a software system to securely collect and store RFID physical properties

in real-time for biomedical processing. Through a generalizable RESTful web services interface,

this framework has supported all of the experimentation in this thesis as well as other RFID data

processing projects. Our framework overcame challenges throughout the wearable IoT sensor net-

works application stack, including communications latency, known-ciphertext vulnerabilities, and

integration of heterogeneous sensor/interrogator pairs.

Using this framework, we monitored non-intrusive, passive, battery-free wearable sensors that

reflect wireless signals without requiring the user’s attention. We detected the changes in the physical

properties of these wireless reflections as the body moves or stretches while wearing the garment, to

indicate biofeedback such as respiratory events like sleep apnea, uterine activity of a mother during

labor and delivery, or movement of the limbs to prevent the onset of a blood clot. Because wireless

signal properties do not translate directly into physiological activity due to a number of factors

including noise and mechanical artifacts, we performed unsupervised machine learning to enable

ubiquitous and non-stationary physiological monitoring via these physical properties of an ambient

wireless signal. We enabled this unsupervised learning approach by dynamically generating synthetic

anomaly data according to a distribution constructed from aggregate environmental observations and

noise.

In addition to environmental noise, FCC standard multifrequency spectrum utilization, and

mechanical interference from moving objects in the field, RFID data collected from the Bellyband

is subject to variations in wearer fit. Further, stretching the band is intended to degrade the

impedance match to the 900 MHz RFID signal; however, the interrogation frequency changes over

time, and so the antenna may not be tuned exactly to the interrogation frequency at a specific time.

Further, wearer fit may change the optimal frequency, such that band stretch actually improves the

impedance match briefly before degrading it as expected, as the antenna tunes to a frequency closer
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to the interrogation frequency in use at that moment. Respiratory artifacts may also move the tag

closer to the interrogator in space, resulting in a strengthening of the backscatter response concurrent

to the signal degredation due to stretching. It is difficult to obtain a consistent backscatter signal

pattern for a given individual and environment, in practice. Nevertheless, by denoising and correcting

measurements of individual RFID physical properties, and by fusing those measure estimates using

Expectation Maximization on a Gaussian Mixture Model into unified classifications and estimates of

band state, we classified human activity state from powerless, wireless, wearable RFID-based smart

garment devices. Classification was done in an unsupervised or semi-unsupervised manner, and a

novel approach to simulating multi-class training data enabled this semi-unsupervised classification

with a high degree of precision and recall accuracy. The development of these algorithms culminated

in a successful laboratory human subjects trial, and clinical trials of infants and pregnant women

are in preparation. We conducted and evaluated live human classification like apnea events, uterine

contractions, and other strain gauge movements using these features, estimated the rate of actuation

and state change, and, finally, made adaptive predictions about the onset of the next event based

upon this information.

These novel algorithms support a range of biomedical projects beyond those considered directly

in this work. Further, the RFID data collection software framework has been demonstrated to be

useful in multiple RF studies, including those on human subjects.

13.1 Future Work

As future work, we are expanding the multisensor fusion model to multiple interrogators to enable

wearer “handoffs” from interrogator to interrogator as they move freely about the area. We are

studying multisensor fusion of multiple worn RFID tags for signal denoising in order to enable

mobile interrogation of an ambulatory subject outside of this hospital setting.

Additionally, Vora12;148 describes a passive wearable solution for monitoring heart rate activity

in human subjects. This circuit works by disabling the RFID backscatter response for a brief period

when an ECG R-wave spike is observed. The intervals between successive RFID response “gaps” are

used to estimate the subject heart rate. An example deployment of the RFID heart monitor using a
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127

Figure 13.1: An example physical deployment according to Figure 4.3 in which the Bellyband
is actuated by the SimBaby simulator while an RFID-based heart monitor is simultaneously
interrogated by the client driver described in Figure 4.8

simulated EKG signal, and RFID Bellyband respiratory monitor deployed on a SimBaby exhibiting

simulated respiratory activity, is shown in Figure 13.1. The RFID software and data framework of

Section 4.2 was used to collect RFID-based ECG data for analysis.

A correlation exists between heart beat interval and respiratory activity due to respiratory sinus

arrhythmia (RSA)149. Respiratory activity can be inferred by modulating according to R-wave and

T-wave activity149 activity; however, the low-power RFID-based heart monitor provides informa-

tion on subject R-wave activity. During inhalation, the interval between successive R-wave peaks

decreases, and subsequently rises during expiration. It is known that respiratory analysis can be

performed using R-wave periods only, if noise reduction on the period data is performed150.

Because the time-series data provided by the RFID-based heart monitor is different from a

traditional ECG trace, simulated heart and respiratory data were simultaneously collected from a

mannequin SimBaby as shown in Figure 13.1. Significant gaps in the RFID response from the heart

RFID tag were used to identify peaks in the R-wave trace of the unknown ECG, and the R-R wave

peaks formed a modulating time-series from which respiration activity is inferred.

R-R intervals are inferred from RFID “outages” by measuring the duration between RFID inter-

rogations. There is a natural gap between interrogations, typically 0.05 seconds or lower depending

upon the interrogation rate. Because we assume at least an interrogation rate of 20 Hz, an interroga-
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Figure 13.2: An example modulation of R-R intervals as inferred from RFID outages during
heart monitoring over a 145 second period, correlating to respiratory activity

tion period of 0.05 seconds is reasonable. Therefore, the RFID tag outage time when a heart R-wave

peak is detected is set to be at least 0.1 seconds. Outages of at least this duration are labeled in

the data, and the period between these labeled data elements is recorded as the R-R interval. The

resulting R-R interval is depicted in Figure 13.2.

As future work, we will collect simultaneous R-R heart data and respiratory data using RFID

wearable devices, as well as a ground-truth respiratory monitor, to infer respiratory detection through

an RFID heart sensor. We have obtained IRB approval for this study on human subjects and work

is ongoing at the time of this writing.
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Data: Short-window time series vector v of RSSI time series data, resampled to a known
constant sampling frequency for spectral analysis

Result: Most likely biologically feasible fundamental oscillatory frequency
Function QuinnInterpolate(M , F , x):

/* Using Quinn interpolation, compute the resulting frequency x̂ from

frequency bin F [x] given frequencies F and magnitudes M */

δ+ ← (<M [x+ 1]×<M [x] + =M [x+ 1]×=M [x])× (<M [x]
2

+ =M [x]
2
)−1;

δ+ ← −δ+ × (1− δ+)−1;

δ− ← (<M [x− 1]×<M [x] + =M [x− 1]×=M [x])× (<M [x]
2

+ =M [x]
2
)−1;

δ− ← δ− × (1− δ−)−1;

K+ ← 1
4 log (3δ4

+ + 6δ2
+ + 1)−

√
6

24 × log ((δ2
+ + 1−

√
2
3 )× (δ2

+ + 1 +
√

2
3 )−1);

K− ← 1
4 log (3δ4

− + 6δ2
− + 1)−

√
6

24 × log ((δ2
− + 1−

√
2
3 )× (δ2

− + 1 +
√

2
3 )−1);

x̂ ← 1
2 (δ+ + δ−) +K+ −K−;

return F [x̂];
/* F [x̂] is computed by taking a weighted average of the two adjacant

frequency bins, weighted by x̂ and 1− x̂ */

M,F ← FFT(v);
/* M, F are the FFT magnitudes and frequencies */

L← find biofeasible localmax idx(M);
Q← [];
for k ∈ L do

/* Find the local maxima FFT frequencies, interpolating the real (<) and

imaginary (=) magnitude components of each maximum frequency by

Quinn’s algorithm */

Qi ← Qi∪ QuinnInterpolate(M, F, k);

end
/* Eliminate frequencies that were not present in the previous time

iteration, within a magnitude threshold σ and frequency bin distance ν */

Qi,k ← 0: @Qi−1,l : |Qi,k −Qi−1,l| ≤ σ; l = {k − ν, ...k + ν};
/* Using the Forward-Backward algorithm of Baum and Welch, compute the most

likely frequency from the current locally-maximal FFT magnitudes and the

corresponding locally-maximal FFT magnitudes from prior time steps, using

the resulting FFT magnitude corresponding to the most likely frequency as

an HMM observation */

Bi ← |Mk| : Qi,k 6= 0;

Bi,j ← Bi,j∑
k Bi,k

;

Ai ← {(2πσ2)−1e
(k−l)2

2σ2 }|k,l=[0,|Qi|],k 6=l;

Ai,j ← Ai,j∑
k Ai,k

;

αi ← Bi−1,k

∑
j(Aj,iαi−1,j);

βi ←
∑
j(|Bi−1,j |Ai,jβi−1,j);

γ ← αi−1,jβi−1,j(
∑
k αi−1,kβi−1,k)−1;

x← argmax γ
/* Using Quinn interpolation, compute the resulting frequency z from most

likely frequency bin F [x] and corresponding magnitude M [x] */

z ← QuinnInterpolate(M, F, x);
Algorithm 1: An algorithm to compute z, the most likely biologically-feasible oscillatory fre-
quency from a time-series window of frequency-normalized RFID RSSI strain gauge data
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Discrete Fourier Transform Time-Series Estimates
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Appendix B: Modifications to sllrp Library to Enable Physical Layer
Impinj Extensions and Message Queues

The following physical layer library revisions enable selection of antenna and frequency (where

geographically available) for Impinj interrogators. Additionally, we enable the use of message queues

according to the Producer-Consumer pattern to decrease the delay induced at the network layer due

to communications overhead in transmitting each received tag message. Instead, tags are placed

into a queue immediately upon receipt, and transmitted for processing in small batches at regular

intervals (i.e., every 0.5 seconds). Nagle’s Algorithm is disabled at the transport layer as a result

of the Producer-Consumer pattern and batch transmission manually implemented here, so that

transmission and delay is better controlled at the application layer. Finally, Impinj extensions are

enabled on initial connection to the interrogator to enable the measurement of Doppler shift and

phase angle for each received backscatter response.

B.1 Modifications to llrp.diff in the sllrp Library

llrp.diff
1 Index: llrp.py

2 ===================================================================

3 --- llrp.py (revision 411)

4 +++ llrp.py (revision 1620)

5 @@ -15,6 +15,8 @@

6 from twisted.internet.protocol import ClientFactory

7 from twisted.protocols.basic import LineReceiver

8 from twisted.internet.error import ReactorAlreadyRunning, ReactorNotRunning

9 +import threading # mongan 8/22/16

10 +import Queue # mongan 8/22/16

11

12 LLRP_PORT = 5084

13

14 @@ -72,16 +74,23 @@

15 data[:self.full_hdr_len])

16 ver = (msgtype >> 10) & BITMASK(3)

17 msgtype = msgtype & BITMASK(10)

18 + name = '' # mongan 11/10/16

19 try:

20 name = Message_Type2Name[msgtype]

21 logger.debug('deserializing {} command'.format(name))

22 decoder = Message_struct[name]['decode']

23 except KeyError:
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24 - raise LLRPError('Cannot find decoder for message type '

25 - '{}'.format(msgtype))

26 + raise LLRPError('Cannot find decoder for message name {}, message

type '↪→

27 + '{}'.format(name, msgtype)) # mongan 8/17/15

28 body = data[self.full_hdr_len:length]

29 try:

30 + if name == "ENABLE_IMPINJ_EXTENSIONS_RESPONSE": # mongan 8/18/15

31 self.msgdict = {

32 + name: dict()

33 + }

34 + self.msgdict[name]['Result'] = decoder(body)[0]

35 + else:

36 + self.msgdict = {

37 name: dict(decoder(body))

38 }

39 self.msgdict[name]['Ver'] = ver

40 @@ -90,8 +99,8 @@

41 logger.debug('done deserializing {} command'.format(name))

42 except LLRPError as e:

43 logger.warning('Problem with {} message format: {}'.format(name, e))

44 + return

45 return ''

46 - return ''

47

48 def isSuccess (self):

49 if not self.msgdict:

50 @@ -106,6 +115,8 @@

51 ['ConnectionAttemptEvent']['Status'] == 'Success'

52 elif 'LLRPStatus' in md:

53 return md['LLRPStatus']['StatusCode'] == 'Success'

54 + elif 'Result' in md:

55 + return md['Result']['LLRPStatus']['StatusCode'] == 'Success' #

mongan 8/18/15↪→

56 except KeyError as KE:

57 logger.error('failed to parse status from {}: {}'.format(msgName,

58 KE))

59 @@ -136,6 +147,7 @@

60 STATE_SENT_GET_CAPABILITIES = 9

61 STATE_PAUSING = 10

62 STATE_PAUSED = 11

63 + STATE_SENT_IMPINJ_EXTENSIONS = 12

64

65 @classmethod

66 def getStates (_):

67 @@ -157,7 +169,7 @@

68 start_inventory=True, reset_on_connect=True,

69 disconnect_when_done=True,

70 tag_content_selector={},

71 - session=2, tag_population=4):

72 + session=2, tag_population=4, mode_index=-1, channellist=[],

periodictrigger=100):↪→

73 self.factory = factory

74 self.setRawMode()
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75 self.state = LLRPClient.STATE_DISCONNECTED

76 @@ -181,6 +193,9 @@

77 self.tag_content_selector = tag_content_selector

78 if self.start_inventory:

79 logger.info('will start inventory on connect')

80 + self.mode_index = mode_index # mongan 8/7/15

81 + self.channellist = channellist # mongan 6/6/2016

82 + self.periodictrigger = periodictrigger # mongan 7/19/2016

83

84 logger.info('using antennas: {}'.format(self.antennas))

85

86 @@ -202,6 +217,12 @@

87

88 self.disconnecting = False

89 self.rospec = None

90 +

91 + # mongan 8/22/16

92 + self.dataqueue = Queue.Queue()

93 + self.exiting = False

94 + self.datathread = threading.Thread(target=self.datahandler, args=())

95 + self.datathread.start()

96

97 def addStateCallback (self, state, cb):

98 self._state_callbacks[state].append(cb)

99 @@ -211,6 +232,7 @@

100

101 def connectionMade (self):

102 self.transport.setTcpKeepAlive(True)

103 + self.transport.setTcpNoDelay(True) # mongan 8/12/16 disable Nagle to help

reduce lag↪→

104 self.peername = self.transport.getHandle().getpeername()

105 logger.info('connected to {}'.format(self.peername))

106 self.factory.protocols.add(self)

107 @@ -313,6 +335,8 @@

108 logger.debug('starting message callbacks for {}'.format(msgName))

109 for fn in self._message_callbacks[msgName]:

110 fn(lmsg)

111 + #t = threading.Thread(target=fn, args=(lmsg,)) # mongan 8/22/16

112 + #t.start()

113 logger.debug('done with message callbacks for {}'.format(msgName))

114

115 # keepalives can occur at any time

116 @@ -392,6 +416,33 @@

117 elif self.start_inventory:

118 self.startInventory()

119

120 + # mongan 8/13/15

121 + elif self.state == LLRPClient.STATE_SENT_IMPINJ_EXTENSIONS:

122 + if msgName != 'ENABLE_IMPINJ_EXTENSIONS_RESPONSE':

123 + logger.error('unexpected response {} ' \

124 + ' when receiving Impinj Extensions

Response'.format(msgName))↪→

125 + return

126 +
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127 + if not lmsg.isSuccess():

128 + logger.fatal('Error sending Impinj Extensions:

{}'.format(lmsg.msgdict[msgName]))↪→

129 + return

130 +

131 + self.processDeferreds(msgName, lmsg.isSuccess())

132 +

133 + rospec = self.getROSpec()['ROSpec'] # mongan 8/18/15

134 +

135 +

136 + started = defer.Deferred()

137 + started.addCallback(self._setState_wrapper,

138 + LLRPClient.STATE_INVENTORYING)

139 + started.addErrback(self.panic, 'ENABLE_ROSPEC failed')

140 +

141 + d = defer.Deferred() # mongan 8/18/15

142 + d.addCallback(self.send_ENABLE_ROSPEC, rospec, onCompletion=started)

143 + d.addErrback(self.panic, 'ADD_ROSPEC failed')

144 +

145 + self.send_ADD_ROSPEC(rospec, onCompletion=d) # mongan 8/15/15; add

rospec after enabling extensions↪→

146 +

147 # in state SENT_ADD_ROSPEC, expect only ADD_ROSPEC_RESPONSE; respond to

148 # favorable ADD_ROSPEC_RESPONSE by enabling the added ROSpec and

149 # advancing to state SENT_ENABLE_ROSPEC.

150 @@ -491,21 +542,10 @@

151 + def datahandler(self):

152 + while not self.exiting:

153 + data = self.dataqueue.get(block=True)

154 - def rawDataReceived (self, data):

155 - logger.debug('got {} bytes from reader: {}'.format(len(data),

156 - data.encode('hex')))

157 - if self.expectingRemainingBytes:

158 - if len(data) >= self.expectingRemainingBytes:

159 - data = self.partialData + data

160 - self.partialData = ''

161 - self.expectingRemainingBytes -= len(data)

162 - else:

163 - # still not enough; wait until next time

164 - self.partialData += data

165 - self.expectingRemainingBytes -= len(data)

166 - return

167 -

168 @@ -539,7 +579,24 @@

169 +

170 + def rawDataReceived (self, data):

171 + logger.debug('got {} bytes from reader: {}'.format(len(data),

172 + data.encode('hex')))

173

174 + if self.expectingRemainingBytes:

175 + if len(data) >= self.expectingRemainingBytes:

176 + data = self.partialData + data

177 + self.partialData = ''

178 + self.expectingRemainingBytes -= len(data)
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179 + else:

180 + # still not enough; wait until next time

181 + self.partialData += data

182 + self.expectingRemainingBytes -= len(data)

183 + return

184 +

185 + self.dataqueue.put(data)

186 +

187 def panic (self, failure, *args):

188 logger.error('panic(): {}'.format(args))

189 logger.error(failure.getErrorMessage())

190 @@ -564,6 +621,17 @@

191 self.setState(LLRPClient.STATE_SENT_GET_CAPABILITIES)

192 self._deferreds['GET_READER_CAPABILITIES_RESPONSE'].append(onCompletion)

193

194 + # mongan 8/13/15

195 + def send_ENABLE_IMPINJ_EXTENSIONS (self, onCompletion):

196 + self.sendLLRPMessage(LLRPMessage(msgdict={

197 + 'ImpinjEnableExtensions': {

198 + 'Ver': 1,

199 + 'Type': 1023,

200 + 'ID': 0,

201 + }}))

202 + self.setState(LLRPClient.STATE_SENT_IMPINJ_EXTENSIONS)

203 + self._deferreds['ENABLE_IMPINJ_EXTENSIONS_RESPONSE'].append(onCompletion)

204 +

205 def send_ADD_ROSPEC (self, rospec, onCompletion):

206 self.sendLLRPMessage(LLRPMessage(msgdict={

207 'ADD_ROSPEC': {

208 @@ -689,23 +757,25 @@

209 logger.warn('ignoring startInventory() while already inventorying')

210 return None

211

212 - rospec = self.getROSpec()['ROSpec']

213 + rospec = self.getROSpec()['ROSpec']

214

215 logger.info('starting inventory')

216

217 - started = defer.Deferred()

218 - started.addCallback(self._setState_wrapper,

219 - LLRPClient.STATE_INVENTORYING)

220 - started.addErrback(self.panic, 'ENABLE_ROSPEC failed')

221 + # mongan 8/18/15

222 + #started = defer.Deferred()

223 + #started.addCallback(self._setState_wrapper,

224 + # LLRPClient.STATE_INVENTORYING)

225 + #started.addErrback(self.panic, 'ENABLE_ROSPEC failed')

226

227 if self.duration:

228 task.deferLater(reactor, self.duration, self.stopPolitely, True)

229

230 d = defer.Deferred()

231 - d.addCallback(self.send_ENABLE_ROSPEC, rospec, onCompletion=started)

232 - d.addErrback(self.panic, 'ADD_ROSPEC failed')
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233 + #d.addCallback(self.send_ENABLE_ROSPEC, rospec, onCompletion=started) #

mongan 8/18/15↪→

234 + d.addErrback(self.panic, 'ENABLE_IMPINJ_EXTENSIONS failed') # mongan

8/18/15 was ADD_ROSPEC↪→

235

236 - self.send_ADD_ROSPEC(rospec, onCompletion=d)

237 + self.send_ENABLE_IMPINJ_EXTENSIONS(onCompletion=d) # mongan 8/13/15

238 + #self.send_ADD_ROSPEC(rospec, onCompletion=d) # mongan 8/15/15

239

240 def getROSpec (self):

241 if self.rospec:

242 @@ -717,7 +787,9 @@

243 tx_power=self.tx_power, antennas=self.antennas,

244 tag_content_selector=self.tag_content_selector,

245 session=self.session,

246 - tag_population=self.tag_population)

247 + tag_population=self.tag_population,

248 + modeidx=self.mode_index,

249 + channellist=self.channellist,

periodictrigger=self.periodictrigger) #mongan 6/6/2016 (channellist) 8/15/15

(modeidx), 7/19/16 (periodictrigger)

↪→

↪→

250 logger.debug('ROSpec: {}'.format(self.rospec))

251 return self.rospec

252

253 @@ -827,6 +899,8 @@

254 self._message_callbacks = defaultdict(list)

255

256 self.protocols = set()

257 +

258 + self.proto = None

259

260 def startedConnecting(self, connector):

261 logger.info('connecting...')

262 @@ -839,19 +913,22 @@

263 self._message_callbacks['RO_ACCESS_REPORT'].append(cb)

264

265 def buildProtocol(self, _):

266 - proto = LLRPClient(factory=self, **self.client_args)

267 + if 'ntari' in self.client_args: # mongan 5/3/17

268 + del self.client_args['ntari']

269

270 + self.proto = LLRPClient(factory=self, **self.client_args)

271 +

272 # register state-change callbacks with new client

273 for state, cbs in self._state_callbacks.items():

274 for cb in cbs:

275 - proto.addStateCallback(state, cb)

276 + self.proto.addStateCallback(state, cb)

277

278 # register message callbacks with new client

279 for msg_type, cbs in self._message_callbacks.items():

280 for cb in cbs:

281 - proto.addMessageCallback(msg_type, cb)

282 + self.proto.addMessageCallback(msg_type, cb)
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283

284 - return proto

285 + return self.proto

286

287 def clientConnectionLost(self, connector, reason):

288 logger.info('lost connection: {}'.format(reason.getErrorMessage()))

B.2 Modifications to llrp proto.diff in the sllrp Library

llrp proto.diff
1 Index: llrp_proto.py

2 ===================================================================

3 --- llrp_proto.py (revision 411)

4 +++ llrp_proto.py (revision 1620)

5 @@ -1843,21 +1846,50 @@

6 +# mongan 7/19/16 16.2.4.1.1.1.1 PeriodicTriggerValue Parameter

7 +def encode_PeriodicTriggerValue(par):

8 + msgtype = Message_struct['PeriodicTriggerValue']['type']

9 +

10 + msg_header = '!HHII'

11 + msg_header_len = struct.calcsize(msg_header)

12 +

13 + offset = 0

14 +

15 + # utc timestamp parameter after the periodic trigger value is optional and so

is omitted; so that the first time is the first message receipt plus the

offset which we assume to be 0 so that the first message is delivered right

away to start

↪→

↪→

↪→

16 + data = ''

17 + data = struct.pack(msg_header, msgtype,

18 + len(data) + msg_header_len, offset, par['PeriodicTriggerValue']) +

data↪→

19 +

20 + return data

21 +

22 +Message_struct['PeriodicTriggerValue'] = {

23 + 'type': 180,

24 + 'fields': [

25 + 'Type',

26 + 'Length',

27 + 'Offset',

28 + 'Period',

29 + 'UTCTimestamp'

30 +

31 + ],

32 + 'encode': encode_PeriodicTriggerValue

33 +}

34 +

35 @@ -2047,7 +2079,10 @@

36 if 'C1G2SingulationControl' in par:

37 data += encode('C1G2SingulationControl')(par['C1G2SingulationControl'])

38 # XXX custom parameters

39 -
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40 + # mongan 6/6/2016

41 + if 'ImpinjFixedFrequencyMode' in par:

42 + data +=

encode('ImpinjFixedFrequencyMode')(par['ImpinjFixedFrequencyMode'])↪→

43 +

44 data = struct.pack(msg_header, msgtype,

45 len(data) + struct.calcsize(msg_header)) + data

46 return data

47 @@ -2058,8 +2093,9 @@

48 'TagInventoryStateAware',

49 'C1G2Filter',

50 'C1G2RFControl',

51 - 'C1G2SingulationControl'

52 + 'C1G2SingulationControl',

53 # XXX custom parameters

54 + 'ImpinjFixedFrequencyMode'

55 ],

56 'encode': encode_C1G2InventoryCommand

57 }

58 @@ -2116,21 +2152,77 @@

59 'encode': encode_C1G2SingulationControl

60 }

61

62 +# mongan 6/6/2016 Impinj antenna select

63 +def encode_ImpinjFixedFrequencyMode(par):

64 + msgtype = Message_struct['ImpinjFixedFrequencyMode']['type']

65 +

66 + msg_header = '!HH'

67 +

68 + data = struct.pack('!I',

Message_struct['ImpinjFixedFrequencyMode']['vendorid'])↪→

69 + data += struct.pack('!I',

Message_struct['ImpinjFixedFrequencyMode']['subtype'])↪→

70 +

71 + if 'FixedFrequencyMode' in par and par['FixedFrequencyMode']:

72 + data += struct.pack('!H', par['FixedFrequencyMode'])

73 + data += struct.pack('!H', 0) # reserved

74 + if 'ChannelListCount' in par and par['ChannelListCount']:

75 + data += struct.pack('!H', par['ChannelListCount'])

76 + if 'ChannelsList' in par and par['ChannelsList']:

77 + for c in par['ChannelsList']:

78 + data += struct.pack('!H', c)

79 +

80 + data = struct.pack(msg_header, msgtype,

81 + len(data) + struct.calcsize(msg_header)) + data

82 +

83 + return data

84 +

85 +Message_struct['ImpinjFixedFrequencyMode'] = {

86 + 'type': 1023, # Custom Parameter

87 + 'subtype': 26, # FixedFrequencyList

88 + 'vendorid': 25882, # Impinj

89 + 'id': 0,

90 + 'fields': [
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91 + 'FixedFrequencyMode', #bits 0-16, skip 16-32 as reserved, then

92 + 'ChannelListCount', # bits 0-16, followed by list of 16-bit channels

93 + 'ChannelsList' # array of channels to append as 16-bit channels list

right after ChannelListCount↪→

94 + ],

95 + 'encode': encode_ImpinjFixedFrequencyMode

96 +}

97 +

98 +# mongan 8/13/2015 Impinj enable extensions; must call before adding ROSpec if

using Impinj extensions↪→

99 +def encode_ImpinjEnableExtensions (par):

100 + data = struct.pack('!I',

Message_struct['ImpinjEnableExtensions']['vendorid'])↪→

101 + data += struct.pack('!B',

Message_struct['ImpinjEnableExtensions']['subtype'])↪→

102 + data += struct.pack('!I', 0) # reserved space for future use in protocol

103 +

104 + return data

105 +

106 +Message_struct['ImpinjEnableExtensions'] = {

107 + 'type': 1023,

108 + 'vendorid': 25882,

109 + 'subtype': 21,

110 + 'fields': [

111 + 'Ver', 'Type', 'ID',

112 + ],

113 + 'encode': encode_ImpinjEnableExtensions

114 +}

115 +

116

117 + if 'ImpinjTagReportContentSelector' in par and

par['ImpinjTagReportContentSelector']: # mongan 8/13/15 if impinj tag

selector group given, encode it

↪→

↪→

118 + data +=

encode('ImpinjTagReportContentSelector')(par['ImpinjTagReportContentSelector'])↪→

119 +

120 data = struct.pack(msg_header, msgtype,

121 len(data) + msg_header_len,

122 roReportTrigger, n) + data

123

124 return data

125 @@ -2138,17 +2230,137 @@

126 'fields': [

127 'N',

128 'ROReportTrigger',

129 - 'TagReportContentSelector'

130 + 'TagReportContentSelector',

131 + 'ImpinjTagReportContentSelector', # mongan 8/8/2015

132 ],

133 'encode': encode_ROReportSpec

134 }

135

136 +# mongan 8/8/2015

137 +def encode_ImpinjTagReportContentSelector (par):
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138 + msgtype = Message_struct['ImpinjTagReportContentSelector']['type']

139 +

140 + msg_header = '!HH'

141 +

142 + data = struct.pack('!I',

Message_struct['ImpinjTagReportContentSelector']['vendorid'])↪→

143 + data += struct.pack('!I',

Message_struct['ImpinjTagReportContentSelector']['subtype'])↪→

144 +

145 + if 'ImpinjEnableRFPhaseAngle' in par and par['ImpinjEnableRFPhaseAngle']:

146 + data +=

encode('ImpinjEnableRFPhaseAngle')(par['ImpinjEnableRFPhaseAngle'])↪→

147 + if 'ImpinjEnableRFDopplerFrequency' in par and

par['ImpinjEnableRFDopplerFrequency']:↪→

148 + data +=

encode('ImpinjEnableRFDopplerFrequency')(par['ImpinjEnableRFDopplerFrequency'])↪→

149 +

150 + data = struct.pack(msg_header, msgtype,

151 + len(data) + struct.calcsize(msg_header)) + data

152 +

153 + return data

154 +

155 +# mongan 8/8/2015

156 +Message_struct['ImpinjTagReportContentSelector'] = {

157 + 'type': 1023, # Custom Parameter

158 + 'subtype': 50, # Tag Report Content Selector

159 + 'vendorid': 25882, # Impinj

160 + 'id': 0,

161 + 'fields': [

162 + 'ImpinjEnableRFPhaseAngle',

163 + 'ImpinjEnableRFDopplerFrequency'

164 + ],

165 + 'encode': encode_ImpinjTagReportContentSelector

166 +}

167 +

168 +# mongan 8/17/2015

169 +# the ENABLE_IMPINJ_EXTENSIONS_RESPONSE type is 1023, a custom parameter, as is

the subtypes for doppler and phase, so we'll handle these here as well↪→

170 +# this is called by llrp deserialize, with ver, etc. already extracted

171 +def decode_ImpinjCustomParameter (data):

172 + if len(data) == 0:

173 + return None, data

174 +

175 + msg = {}

176 + logger.debug('%s' % func())

177 +

178 + # Decode parameters

179 + msg['vendor'] = struct.unpack('!I', data[:struct.calcsize('!I')])[0]

180 + data = data[struct.calcsize('!I'):]

181 + msg['subtype'] = struct.unpack('!B', data[:struct.calcsize('!B')])[0]

182 + data = data[struct.calcsize('!B'):]

183 +

184 + # subtype 22 is EXTENSIONS_RESPONSE

185 + ret, data = decode_LLRPStatus(data)
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186 + msg['LLRPStatus'] = ret

187 +

188 + return msg, data

189 +

190 +# mongan 8/17/2015

191 +Message_struct['ENABLE_IMPINJ_EXTENSIONS_RESPONSE'] = {

192 + 'type': 1023, # Custom Parameter

193 + 'fields': [

194 + 'Ver', 'Type', 'ID',

195 + 'vendor', 'subtype',

196 + 'LLRPStatus'

197 + ],

198 + 'decode': decode_ImpinjCustomParameter

199 +}

200 +

201 +# mongan 8/8/2015

202 +def encode_ImpinjEnableRFPhaseAngle (par):

203 + msgtype = Message_struct['ImpinjEnableRFPhaseAngle']['type']

204 +

205 + msg_header = '!HH'

206 +

207 + data = struct.pack('!I',

Message_struct['ImpinjEnableRFPhaseAngle']['vendorid'])↪→

208 + data += struct.pack('!I',

Message_struct['ImpinjEnableRFPhaseAngle']['subtype'])↪→

209 +

210 + data += struct.pack('!H', 1)

211 +

212 + data = struct.pack(msg_header, msgtype,

213 + len(data) + struct.calcsize(msg_header)) + data

214 +

215 + return data

216 +

217 +# mongan 8/8/2015

218 +Message_struct['ImpinjEnableRFPhaseAngle'] = {

219 + 'type': 1023, # Custom Parameter

220 + 'subtype': 52, # Enable RF Phase Angle

221 + 'vendorid': 25882, # Impinj

222 + 'fields': [

223 +

224 + ],

225 + 'encode': encode_ImpinjEnableRFPhaseAngle

226 +}

227 +

228 +# mongan 8/8/2015

229 +def encode_ImpinjEnableRFDopplerFrequency (par):

230 + msgtype = Message_struct['ImpinjEnableRFDopplerFrequency']['type']

231 +

232 + msg_header = '!HH'

233 +

234 + data = struct.pack('!I',

Message_struct['ImpinjEnableRFDopplerFrequency']['vendorid'])↪→

235 + data += struct.pack('!I',

Message_struct['ImpinjEnableRFDopplerFrequency']['subtype'])↪→
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236 + data += struct.pack('!H', 1)

237 +

238 + data = struct.pack(msg_header, msgtype,

239 + len(data) + struct.calcsize(msg_header)) + data

240 +

241 + return data

242 +

243 +# mongan 8/8/2015

244 +Message_struct['ImpinjEnableRFDopplerFrequency'] = {

245 + 'type': 1023, # Custom Parameter

246 + 'subtype': 67, # Enable RF Doppler Frequency

247 + 'vendorid': 25882, # Impinj

248 + 'fields': [

249 +

250 + ],

251 + 'encode': encode_ImpinjEnableRFDopplerFrequency

252 +}

253 +

254 @@ -2216,11 +2428,36 @@

255 +

256 + # mongan 8/18/15

257 + # decode TLV parameters like custom values

258 + while body:

259 + tlv_ver_type = struct.unpack('!H', body[:struct.calcsize('!H')])[0]

260 + if tlv_ver_type == 1023: # CustomParameter (Impinj)

261 + body = body[struct.calcsize('!H'):]

262 + tlv_length = struct.unpack('!H', body[:struct.calcsize('!H')])[0]

263 + body = body[struct.calcsize('!H'):]

264 + tlv_vendor = struct.unpack('!I', body[:struct.calcsize('!I')])[0]

265 + body = body[struct.calcsize('!I'):]

266 + tlv_subtype = struct.unpack('!I', body[:struct.calcsize('!I')])[0]

267 + body = body[struct.calcsize('!I'):]

268 + tlv_value = struct.unpack('!H', body[:struct.calcsize('!H')])[0]

269 + body = body[struct.calcsize('!H'):]

270 +

271 + # 56 is phase angle, 68 is doppler

272 + if tlv_subtype == 56:

273 + par['RFPhaseAngle'] = tlv_value

274 + elif tlv_subtype == 68:

275 + par['Doppler'] = tlv_value

276 + else:

277 + break

278 +

279 + #print tlv_ver_type, tlv_length, tlv_vendor, tlv_subtype, tlv_value

280 +

281 @@ -2244,6 +2481,8 @@

282 'AirProtocolTagData',

283 'AccessSpecID',

284 'OpSpecResult',

285 + 'RFPhaseAngle', # mongan 8/18/15

286 + 'Doppler', # mongan 8/18/15

287 ],

288 'decode': decode_TagReportData

289 }
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290 @@ -2776,11 +3015,14 @@

291 str += __llrp_data2xml(e, p, level + 1)

292 else:

293 str += tabs + '\t<%s>%s</%s>\n' % (p, sub, p)

294 -

295 +

296 str += tabs + '</%s>\n' % name

297 -

298 +

299 return str

300

301 + if msg == None: # mongan 6/23/2016

302 + return ''

303 +

304 ans = ''

305 for p in msg:

306 ans += __llrp_data2xml(msg[p], p)

307 @@ -2790,7 +3032,7 @@

308 def __init__(self, llrpcli, msgid, priority=0, state='Disabled',

309 antennas=(1,), tx_power=91, duration_sec=None,

310 report_every_n_tags=None, tag_content_selector={},

311 - session=2, tag_population=4):

312 + session=2, tag_population=4, modeidx=-1, channellist=[],

periodictrigger=100, ntari=-1): #mongan 6/6/2016 to add channellist, added

modeidx 8/7/15, periodictrigger 7/19/16, ntari 9/28/16

↪→

↪→

313 # Sanity checks

314 if msgid <= 0:

315 raise LLRPError('invalid ROSpec message ID {} (need >0)'.format(\

316 @@ -2801,26 +3043,33 @@

317 if not state in ROSpecState_Name2Type:

318 raise LLRPError('invalid ROSpec state {} (need [{}])'.format(\

319 state, ','.join(ROSpecState_Name2Type.keys())))

320 -

321 +

322 rmode = llrpcli.reader_mode

323 + if modeidx == -1:

324 mode_index = rmode['ModeIdentifier']

325 + else:

326 + mode_index = modeidx # mongan 8/7/15

327 +

328 + if ntari == -1:

329 tari = rmode['MaxTari']

330 -

331 + else:

332 + tari = ntari

333 +

334 tagReportContentSelector = {

335 - 'EnableROSpecID': False,

336 - 'EnableSpecIndex': False,

337 - 'EnableInventoryParameterSpecID': False,

338 + 'EnableROSpecID': True,

339 + 'EnableSpecIndex': True,

340 + 'EnableInventoryParameterSpecID': True,

341 'EnableAntennaID': True,
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342 - 'EnableChannelIndex': False,

343 + 'EnableChannelIndex': True,

344 'EnablePeakRRSI': True,

345 - 'EnableFirstSeenTimestamp': False,

346 + 'EnableFirstSeenTimestamp': True,

347 'EnableLastSeenTimestamp': True,

348 'EnableTagSeenCount': True,

349 - 'EnableAccessSpecID': False,

350 + 'EnableAccessSpecID': True,

351 }

352 if tag_content_selector:

353 tagReportContentSelector.update(tag_content_selector)

354 -

355 +

356 self['ROSpec'] = {

357 'ROSpecID': msgid,

358 'Priority': priority,

359 @@ -2827,7 +3076,8 @@

360 'CurrentState': state,

361 'ROBoundarySpec': {

362 'ROSpecStartTrigger': {

363 - 'ROSpecStartTriggerType': 'Immediate',

364 + 'ROSpecStartTriggerType': 'Immediate', # was Immediate, can

be Periodic in which case periodic trigger will be used; mongan 7/19/16↪→

365 + 'PeriodicTriggerValue': periodictrigger

366 },

367 'ROSpecStopTrigger': {

368 'ROSpecStopTriggerType': 'Null',

369 @@ -2837,7 +3087,7 @@

370 'AISpec': {

371 'AntennaIDs': ' '.join(map(str, antennas)),

372 'AISpecStopTrigger': {

373 - 'AISpecStopTriggerType': 'Duration',

374 + 'AISpecStopTriggerType': 'Null', # was Duration mongan

7/20/16↪→

375 'DurationTriggerValue': 500,

376 },

377 'InventoryParameterSpec': {

378 @@ -2850,10 +3100,14 @@

379 'ROReportTrigger': 'Upon_N_Tags_Or_End_Of_AISpec',

380 'N': 1,

381 'TagReportContentSelector': tagReportContentSelector,

382 + 'ImpinjTagReportContentSelector': { # mongan 8/8/2015

383 + 'ImpinjEnableRFPhaseAngle': True, # append this so that if

using Impinj, this custom parameter will cause it to output doppler and phase

by default

↪→

↪→

384 + 'ImpinjEnableRFDopplerFrequency': True

385 },

386 + },

387 }

388 @@ -2877,18 +3131,27 @@

389 +

390 + # mongan 6/6/2016 - parameterize to select frequencies; FCC does

not allow a single frequency continuously / without delay↪→
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391 + if len(channellist) > 0:

392 + for antconfig in

self['ROSpec']['AISpec']['InventoryParameterSpec']['AntennaConfiguration']:↪→

393 + antconfig['C1G2InventoryCommand']['ImpinjFixedFrequencyMode']

= {↪→

394 + 'FixedFrequencyMode': 2,

395 + 'ChannelListCount': len(channellist),

396 + 'ChannelsList': channellist

397 + }

398 +
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Appendix C: Institutional Review Board Approval Letters for Relevant
Human Studies Protocols

C.1 IRB Approval for Infant Respiratory Monitoring



Page 1 of 1 

 

1505 Race Street, 7th Floor Bellet Building, Philadelphia, PA 19102 | Tel: 215.762.3944 

HRPP@drexel.edu | drexel.edu/research 

  

 

 

Office of Research 

 

APPROVAL OF PROTOCOL 
February 13, 2018
 
Kapil Dandekar, M.D. 
 
Dear Dr. Dandekar: 
 
On 02/13/2018 the IRB reviewed the following protocol: 

Type of Review: Continuation Expedited 

Title: Smart Fabric Bellyband to Monitor Infant Respiratory Activity 

Investigator: Kapil Dandekar, M.D. 

IRB ID: 1504003601-R002 

Funding: None 

Grant Title: None 

Grant ID: None 

IND, IDE or HDE: None 

Documents Reviewed: HRP 212 Continuing Review Progress Report, Previous Action, HRP 502 
Informed Consent, Confirmed Trainings 

 
The IRB approved the protocol from 02/19/2018 to 02/18/2019 inclusive. 
 
On 02/13/2018 – According to 45 CFR 46.109(e) this study has been Approved Expedited Renewal.  Renewal Approval 
Includes Enrollment of Infants from Hahnemann University Hospital Neonatal Intensive Care Unit (NICU) located at 230 N 
Broad St, Philadelphia, PA 19102 to wear the Smart Fabric Bellyband to monitor infant respiratory activity: 10 Approved; 0 
Enrolled; 10 Remaining to Complete the Study; HRP 502 Informed Consent Version February 2016. 
According to 45 CFR 46.110, this study is Approved Expedited Categories 1B and 7. 
According to 21 CFR 812.2(b) Non-Significant Risk Device 
Risks to Children: 45 CFR 46.404 Minimal Risk. 
Permission of one parent is sufficient even if the other parent is alive, known, competent, reasonably available, and shares 
legal responsibility for the care and custody of the child.  
 
Before 02/13/2019, which is 45 days prior to study closure, you are to submit a completed “FORM: Continuing Review 
Progress Report (HRP-212)” and required attachments to request continuing approval or closure. 
 
If continuing review approval is not granted before the expiration date of 02/18/2019 approval of this protocol expires on that 
date.  
 
Attached are stamped approved consent documents. Use copies of these documents to document consent.  
 
In conducting this protocol you are required to follow the requirements listed in the INVESTIGATOR MANUAL (HRP-103). 
Sincerely, 
 
 
 
Barbara Ferrigno 
Member, Medical IRB # 1 
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Consent to Take Part in a Human Research Study Page 1 of 5 

Version: February 2016 Subjects Initials__________  

APPROVED  

Human Research Protection 

Protocol # 1504003601-R002 

Approval Date: 02/19/2018 

Expiration Date: 02/18/2019 
 

Drexel University  

Hahnemann University Hospital 

Permission to Take Part 

In a Research Study 

1. Title of research study: 

 “SMART FABRIC BELLYBAND” to monitor infant respiratory activity. 

2. Researcher: Kapil Dandekar, Genevieve Dion, Adam Fontecchio, Timothy Kurzweg, William Mongan, 

Owen Montgomery, Endla Anday 

3. Why you are being invited to take part in a research study 

We invite you to take part in a research study because you have an infant, and we are developing a 

passive, wireless device to monitor motion and breathing  activity.  

4. What you should know about a research study 

 Someone will explain this research study to you. 

 Whether or not you take part is up to you. 

 You can choose not to take part. 

 You can agree to take part now and change your mind later. 

 If you decide to not be a part of this research no one will hold it against you. 

 Feel free to ask all the questions you want before you decide. 

5. Who can you talk to about this research study? 

If you have questions, concerns, or complaints, or think the research has hurt you, talk to the research 

team at William Mongan: 215-895-0286 

This research has been reviewed and approved by an Institutional Review Board (IRB). An IRB 

reviews research projects so that steps are taken to protect the rights and welfare of human subjects 

taking part in research.  You may talk to them at (215) 762-3944 or email HRPP@drexel.edu for any 

of the following: 

 Your questions, concerns, or complaints are not being answered by the research team. 

 You cannot reach the research team. 

 You want to talk to someone besides the research team. 

 You have questions about your rights as a research subject. 

 You want to get information or provide input about this research. 

6. Why are we doing this research? 

We are currently conducting a research study  to compare the Smart Fabric Bellyband, a medical 

device developed in the Drexel Wireless Systems Laboratory (DWSL).  The goal of this study is 

automated detection of abnormalities in the control of breathing. 
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Version: February 2016 Subjects Initials__________  

APPROVED  

Human Research Protection 

Protocol # 1504003601-R002 

Approval Date: 02/19/2018 

Expiration Date: 02/18/2019 
 

 

7. How long will the research last? 

Your infant will be monitored with the BellyBand for up to 24 hours, in addition to the standard 

monitoring the infant will be placed on when he/she is admitted to the Neonatal Intensive Care Uniit. 

8. How many people will be studied? 

We expect about 20 infants will be enrolled in this research study. 

9. What happens if I say yes, I want to be in this research? 
 

1. The baby will wear the Smart Fabric Bellyband around the abdominal area for the duration of 

the study. 

2. The baby will have two devices placed during monitoring: the Smart Fabric Bellyband and 

traditional infant monitoring devices.  

3. This is a one time study, so no follow up will be needed. The baby will be monitored with the 

Bellyband on for a predetermined length of time not to exceed 24 hours.  

4. We would like to take a photo of the baby’s abdominal area wearing the band. The photo will 

only be of the abdomen. The baby will not be able to be identified form the photo. 

10. What are my Responsibilities If I Take Part in this Research? 

If you take part in this research, it is very important that you: 

 Follow the physician’s or researcher’s instructions. 

11. What happens if I do not want to be in this research? 

You may decide not to take part in the research and it will not be held against you. 

12. What happens if I say yes, but I change my mind later? 

You agree to take part in the research now and may stop at any time.  It will not be held against you. 

13. Do I have to pay for anything while I am on this study? 

There is no cost to you for participating in this study.   

14. What happens to the information we collect? 

Efforts will be made to limit your personal information, including research study and medical records, 

to people who have a need to review this information. Organizations that may inspect and copy your 

information include the IRB and other representatives of this organization.  The information we collect 

will not be personally identifiable, and may be used for commercialization, FDA clearance, and 

academic publications 

18. What else do I need to know? 

This research is being funded by the National Science Foundation conducted by Drexel University.   
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Version: February 2016 Subjects Initials__________  

APPROVED  

Human Research Protection 

Protocol # 1504003601-R002 

Approval Date: 02/19/2018 

Expiration Date: 02/18/2019 
 

 

Authorization to Use and Disclose Protected Health Information 

Federal law provides additional protections of your personal information that are described here. 

A. Individually Identifiable Health Information That Will Be Collected 

The following personal health information about you will be collected and used during the research 

study and may be given out to others:  

 Your name, address, telephone number, date of birth; 

 Information in medical records located in your doctor’s office or at other medical facilities you 

may have received treatment. 

B. Who Will See and Use Your Health Information within Drexel University  

The researcher and other authorized individuals involved in the research study at Drexel University 

will see your health information during and may give out your health information during the research 

study. These include the researcher and the research staff, the institutional review board and their staff, 

legal counsel, research office and compliance staff, officers of the organization and other people who 

need to see the information in order to conduct the research study or make sure it is being done 

properly. Your health information may be disclosed or transmitted electronically. 

C. Who Else May See and Use your Health Information 

Other persons and organizations outside of Drexel University may see and use your health information 

during this research study. These include:  

 Governmental entities that have the right to see or review your health information, such as The 

Office for Human Research Protections. 

 Doctors and staff at the hospital where this research study will take place. 

 The sponsor of this research study and persons that the sponsor may hire to work on the 

research study. The name of the sponsor is William H. Coulter Endowment. 

If your health information is given to someone not required by law to keep it confidential, then that 

information may no longer be protected, and may be used or given out without your permission. 

D. Why your health information will be used and given out 

Your health information will be used and given out to carry out the research study and to evaluate the 

results of the study. Your information may also be used to meet the reporting requirements of 

governmental agencies. 

E. If you do not want to give authorization to use your health information 

You do not have to give your authorization to use or give out your health information. However, if you 

do not give authorization, you cannot participate in this research study. 

F. How to cancel your authorization 

At any time you may cancel your authorization to allow your health information to be used or given 

out by sending a written notice to Human Research Protection at 1505 Race Street, 7th floor, Bellet 

Building, Mail Stop 444, Philadelphia, Pennsylvania, 19102.  If you leave this research study, no new  
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Version: February 2016 Subjects Initials__________  

APPROVED  

Human Research Protection 

Protocol # 1504003601-R002 

Approval Date: 02/19/2018 

Expiration Date: 02/18/2019 
 

 

health information about you will be gathered after you leave. However, information gathered before 

that date may be used or given out if it is needed for the research study or any follow-up. 

G. When your authorization ends 

Your authorization to use and give out health information will continue until you withdraw or cancel 

your authorization. 

After the research study is finished, your health information will be maintained in a research database. 

Drexel University shall not re-use or re-disclose the health information in this database for other 

purposes unless you give written authorization to do so. However, the Drexel University Institutional 

Review Board may permit other researchers to see and use your health information under adequate 

privacy safeguards. 

H. Your right to inspect your medical and research records 

You will not be able to look at your research records while you are taking part in this research study. 

Your personal information will be made available in an emergency if doctors need this information to 

treat you. You can have access to your medical record and any research study information when the 

study is over. However, the researcher does not have to release research information to you if it is not 

part of your medical record.  
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Version: February 2016 Subjects Initials__________  

APPROVED  

Human Research Protection 

Protocol # 1504003601-R002 

Approval Date: 02/19/2018 

Expiration Date: 02/18/2019 
 

Signature Block for Capable Adult 

Your signature documents your permission to take part in this research. 

DO NOT SIGN THIS FORM AFTER THIS DATE  February 18, 2019 

   

Signature of subject  Date 

 
 

Printed name of subject 

   

Signature of person obtaining consent  Date 

 

 

Printed name of person obtaining consent  Form Date 
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C.2 IRB Approval for Maternal Uterine Monitoring during Labor and
Delivery

Appendix C: IRB Approvals C.2 Uterine IRB Approval



 Page 1 of 2 Template Revision: June 29, 2018 

APPROVAL OF PROTOCOL 

June 29, 2018 
 
Kapil Dandekar, PhD 
Electrical and Computer Engineering 
Drexel University 

Dear Dr. Dandekar: 

On June 28, 2018, the IRB reviewed the following protocol: 

Type of Review: Continuing Review 
Title: Maternity Smart Fabric Bellyband to Monitor Uterine 

Activity 
Investigator: Dandekar, Kapil R 

IRB ID: 1504003602R003 
Funding: Electrical & Computer Engineering (3665) / Wallace 

H. Coulter Endowment 
Grant Title: Maternity "smart fabric bellyband" to monitor uterine 

activity and assess fetal well being 
Grant ID: 12121489 

IND, IDE or HDE: None 
Documents Reviewed: HRP-212 Continuing Review Progress Report, HRP-

503 Protocol, HRP-502 Consent 

On June 28, 2018, the IRB approved the protocol renewal. This protocol was reviewed 
following the Pre-2018 Common Rule. Approval includes enrollment of 20 pregnant 
women to wear the Smart Fabric Bellyband while in active labor. 0 subjects have been 
enrolled since the initial approval; 20 remaining to complete the study.  

According to 45 CFR 46.110, this study is approved Expedited Categories 1(b) and 4. 
Risk Level of Device: Non-Significant Risk, According to 21 CFR 812.2(b). According 
to 45 CFR 46.204, and 45 CFR 46.205, this study involves research not greater than 
minimal risk.  

The IRB approved the protocol from June 29, 2018 to June 28, 2019, inclusive. Before 
May 15, 2019, which is 45 days prior to study closure, you are to submit a continuing 
approval or closure request, and required attachments in COEUS. 

If continuing review approval is not granted before the expiration date of June 28, 2019, 
approval of this protocol expires on that date. 

Approved on 29-JUN-2018 - Drexel IRB Protocol #: 1504003602 - Expires on: 28-JUN-2019
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 Page 2 of 2 Template Revision: June 29, 2018 

Attached are stamped approved consent documents. Use copies of these documents to 
document consent. 

In conducting this protocol you are required to follow the requirements listed in the 
INVESTIGATOR MANUAL (HRP-103). 

 
Sincerely, 
 
 
Zachary Hathaway 
Member, Institutional Review Board #1 

Approved on 29-JUN-2018 - Drexel IRB Protocol #: 1504003602 - Expires on: 28-JUN-2019

167



APPROVED  
Human Research Protection 
Protocol # 150400302R002 
Approval Date: 06/29/2018 
Expiration Date: 06/28/2019 
 

 Consent to Take Part in Human Research Study Page 1 of 3 

Template Version: 2017-12-22                                                                                                                 Subject’s Initials_______________ 
Consent Version: 2018-04-04 

Consent to Take Part 
In a Research Study 

1. Title of research study: Maternity “SMART FABRIC BELLYBAND” to monitor uterine 
activity 

2. Researchers: Kapil Dandekar, Genevieve Dion, Adam Fontecchio, Timothy Kurzweg, 
William Mongan, Owen Montgomery  

3. Why you are being invited to take part in a research study 
We invite you to take part in a research study because you are pregnant, and we want to monitor the 
uterine contraction. 

4. What you should know about a research study 
• Someone will explain this research study to you. 
• Whether or not you take part is up to you. 
• You can choose not to take part. 
• You can agree to take part now and change your mind later. 
• If you decide to not be a part of this research no one will hold it against you. 
• Feel free to ask all the questions you want before you decide. 

5. Who can you talk to about this research study? 
If you have questions, concerns, or complaints, or think the research has hurt you, talk to the research 
team at 215-895-0286 (William Mongan). 
This research has been reviewed and approved by an Institutional Review Board (IRB). An IRB 
reviews research projects so that steps are taken to protect the rights and welfare of human subjects 
taking part in research.  You may talk to them at (215) 762-3944 or email HRPP@drexel.edu for any 
of the following: 

• Your questions, concerns, or complaints are not being answered by the research team. 
• You cannot reach the research team. 
• You want to talk to someone besides the research team. 
• You have questions about your rights as a research subject. 
• You want to get information or provide input about this research. 

6. Why are we doing this research? 
We are currently conducting a research study  to compare the Smart Fabric Bellyband, a medical 
device developed in the Drexel Wireless Systems Laboratory (DWSL), to compare with the 
Tocodynamometer, which is what doctors  use as standard care for fetal monitoring.  We want to see if 
the Smart Fabric Bellyband is able to obtain the same level of information as the Tocodynamometer 
(Toco). 
 

Approved on 29-JUN-2018 - Drexel IRB Protocol #: 1504003602 - Expires on: 28-JUN-2019
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APPROVED  
Human Research Protection 
Protocol # 150400302R002 
Approval Date: 06/29/2018 
Expiration Date: 06/28/2019 
 

 Consent to Take Part in Human Research Study Page 2 of 3 

Template Version: 2017-12-22                                                                                                                 Subject’s Initials_______________ 
Consent Version: 2018-04-04 

7. How long will the research last? 
We expect that you will be in this research study for about 1 hour. 

8. How many people will be studied? 
We expect about 20 people here will be in this research study. 

9. What happens if I say yes, I want to be in this research? 
1. You will still be monitored by the nurses and physicians, and obtaining the standard care. But 

in addition to that, you will be wearing the Smart Fabric Bellyband around your lower 
abdominal area for an hour. 

2. You will have two devices placed during active labor: the Smart Fabric Bellyband and the 
Tocodynamometer. The Tocodynamometer is the medical device for the standard of care. It 
means that without participating in this research, you will still need the ‘toco’ for fetal 
monitoring. We will measure your belly to ensure that the correct bellyband size is used.  

3. We would like to take a photo of your belly wearing the band. The photo will only be of your 
belly. You will not be able to be identified from the photo. 

4. This is a one time study, so no follow up will be needed. You will have the Bellyband on for 
one hour.  

10. What happens if I do not want to be in this research? 
You may decide not to take part in the research and it will not be held against you. 

11. What happens if I say yes, but I change my mind later? 
You agree to take part in the research now and stop at any time, and it will not be held against you. 

12. Do I have to pay for anything while I am on this study? 
There is no cost to you for participating in this study.   

13. What happens to the information we collect? 
Efforts will be made to limit your personal information, including research study and medical records, 
to people who have a need to review this information. We cannot promise complete secrecy. 
Organizations that may inspect and copy your information include the IRB and other representatives of 
this organization.  The information we collect will not be personally identifiable, and may be used for 
commercialization, FDA clearance, and academic publications. 

18. What else do I need to know? 
This research is being funded by the National Science Foundation.  
This research study is being done by Drexel University. 
You will receive a $50 gift card for participating in this study.   

Approved on 29-JUN-2018 - Drexel IRB Protocol #: 1504003602 - Expires on: 28-JUN-2019
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APPROVED  
Human Research Protection 
Protocol # 150400302R002 
Approval Date: 06/29/2018 
Expiration Date: 06/28/2019 
 

Permission to Take Part in a Human Research Study Page 3 of 3 

Template Version: 2017-12-22                                                                                                                 Subject’s Initials_______________ 
Consent Version: 2018-04-04 

Signature Block for Capable Adult 
Your signature documents your permission to take part in this research. 
 

DO NOT SIGN THIS FORM AFTER THIS DATE  06/28/2019 

   

Signature of subject  Date 
  

Printed name of subject 
   

Signature of person obtaining consent  Date 
  

Printed name of person obtaining consent  
 

Approved on 29-JUN-2018 - Drexel IRB Protocol #: 1504003602 - Expires on: 28-JUN-2019
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C.3 IRB Approval for Cardiorespiratory Monitoring of Adults

Appendix C: IRB Approvals C.3 Adult IRB Approval



 
Office of Research 

 

1505 Race Street, 7th Floor Bellet Building, Philadelphia, PA 19102 | Tel: 215.762.3944 

HRPP@drexel.edu | drexel.edu/research 
Page 1 of 2 
Version Date:  02/15/2018 

 

 

APPROVAL OF PROTOCOL 

May 21, 2018 

Timothy Kurzweg, PhD  

Dear Dr. Kurzweg: 

On 05/21/2018, the IRB reviewed the following protocol: 

Type of Review: Continuing  
Title: Passive RFID Based Heart Rate Monitor to Wirelessly 

Monitor Heart Rate 
Investigator: Timothy Kurzweg,  PhD  

IRB ID: 1604004440-R002 
Funding: PFI: BIC Wearable Smart Textiles – (Coeus 5431) 

(Grant #2359163665) 
Grant Title: None 

Grant ID: None 
IND, IDE or HDE: None 

Documents Reviewed: HRP 212 Continuing Review Form, HRP 503 
Protocol, HRP 502 Adult Informed 
Consent/Permission Consent, and Recruitment 
Advertisement  

On 05/21/2018 – Approved Renewal. Renewal Includes: 25 Approved; 6 enrolled; 19 
remaining to complete the study.  
 
The IRB approved the protocol from 06/21/2018 to 06/21/2019 inclusive.  
 
Risks to Children: 45 CFR 46.404  Minimal Risk   
 
Permission of one parent is sufficient even if the other parent is alive, known, competent, 
reasonably available, and shares legal responsibility for the care and custody of the child. 
Assent for children not obtain: The capability of these children is so limited that they 
cannot reasonably be consulted.  
  
Before 05/06/2019, which is 45 days prior to study closure, you are to submit a 
completed “FORM: Continuing Review Progress Report (HRP-212)” and required 
attachments to request continuing approval or closure.  
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Office of Research 

 

1505 Race Street, 7th Floor Bellet Building, Philadelphia, PA 19102 | Tel: 215.762.3944 

HRPP@drexel.edu | drexel.edu/research 
Page 2 of 2 
Version Date:  02/15/2018 

 

If continuing review approval is not granted before the expiration date of 06/20/2019 
approval of this protocol expires on that date.   
 
Attached is a stamped approved consent document. Use copies of this document to 
document consent.  
 
In conducting this protocol you are required to follow the requirements listed in the 
INVESTIGATOR MANUAL (HRP-103).  
 
Sincerely, 
 
 
 
 
 
Adithi Asuri 
Member, IRB #1 
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Consent to Take Part in a Human Research Study Page 1 of 8 

ICF version: Medical DU/HUH Subject Initials: ____________ Revision Date:  10/20/2017 

Drexel University  
Consent to Take Part 
In a Research Study 

At Hahnemann Hospital  

If you are a parent or legal guardian of a child who may take part in this study, permission from you is 
required.  The assent (agreement) of your child may be required.  When we say “you” in this consent 
form, we mean you or your child; when we say “we” in this consent form, we mean Drexel University. 

1. Title of research study: “PASSIVE RFID BASED HEART RATE MONITOR” to 
wirelessly monitor heart rate. (1604004440) 

2. Researcher: Timothy Kurzweg 
 

3.Concise Summary of Key Informtion:  

Globally, cardiovascular diseases continue to remain the leading cause of death; killing 
more people than any other disease. This alone makes a strong case for development of 
convenient continuous cardiac monitors. Additionally, heart rate monitors have also 
started finding applications in diverse areas from optimizing athletic performance to 
monitoring health for those employed in professions where real time health monitoring 
may help mitigate risks (e.g. firefighters). Several technologies have been utilized for 
heart rate monitoring. These include, but are not limited to, ballistocardiography, pulse 
oximetry, phonocardiogram and electrocardiogram.  
Over the last decade, there has been a big push towards the development of wearable 
health monitoring devices. The underlying belief is that wearable devices will allow for 
affordable round-the-clock monitoring which will enable early detection and prevention 
of many diseases. Heart rate monitors and electrocardiogram (ECG) devices are a group 
of devices that have received wide attention from the wearable devices community. 
However, research on ECG monitors has been focused on making better wearable 
sensors and integrating them with a minimal profile. To wirelessly transmit the cardiac 
information, researchers have largely continued using battery-powered methods like 
bluetooth and cellular technologies or prototype RF transmitters. Batteries add to the 
size and weight of wearable systems, making them obtrusive and cumbersome. A 
wearable system benefits from being battery-free as the absence of batteries reduces the 
system down time for battery replacement and charging.  
Passive RFID (Radio Frequency Identification) tags work on wireless power harvested 
from a RFID reader and thus do not require batteries for operation. RFID tags have been 
conventionally used as product identification tools similar to barcodes. For these tags to 
be used in sensor networks, they have to be capable of transmitting sensor data along 
with the tag ID. In its simplest form, an RFID tag can be used as a one bit transmission 
device by turning the RFID tag on/off and having an RFID reader detect the tag's state. 
For instance, the reader detects a `1' when the tag is on and a `0' when the tag is off. A 
similar device that uses two RFID tags has been proposed in literature. Contemporary 
RFID tags are capable of transmitting multiple bits of optional data along with the 
default tag ID. However, additional circuitry like analog to digital converters (ADCs) 
and microcontrollers are required to digitize and embed the sensor data with the tag ID. 
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These additional components not only increase the size of the system but also add to its 
power requirements. Another drawback of such systems is the requirement of 
significant transmitted data redundancy to achieve a degree of reliability. For example, 
the electroencephalogram (EEG) system proposed in literature requires 92% data 
overhead and has a range of only 0.8m. The requirement for data overhead adds to the 
system power consumption.  If this power is harvested wirelessly, higher power demand 
significantly degrades the system's range. The proposed RFID heart monitoring device 
has been designed by leveraging battery-free transmission capabilities of RFID tags 
while using minimal additional components and not requiring any data overheads.  This 
device can potentially be used to wirelessly track a person's heart rate and location 
while he is mobile and could potentially limit the need for a patient to be tethered to a 
cardiac monitor on the hospital bed.    
This research is being performed in order to develop a less invasive wearable 
heart/respiratory monitoring system that requires no external electrical power to 
operate.  Consent is being sought for this research is voluntary.  If you consent to the 
study, you will participate for approximately 30 minutes, during which a pair of ECG 
electrodes will be attached to the subject’s chest to monitor heart rate via the wireless 
heart rate monitor.   A smart-fabric Bellyband will be worn about the abdominal area 
for respiratory rate monitoring.  Normal respiratory and heart activities will be 
monitored for approximately 30 minutes, and then the electrodes and Bellyband will be 
removed.  There is no direct benefit from this study as traditional monitors will be used 
as needed outside of this research study; however, the data collected will be used to 
develop wireless, wearable monitoring technologies. In order to mitigate the radio-
frequency exposure of the subject, and to comply with the FCC standard, we will utilize 
an off-the-shelf RFID interrogator installed at a proper reading distance. That is, the 
distance between the RFID interrogator and the bellyband will be at least 25 cm. In this 
way, we will be able to read the bellyband data and, at the same time, to reduce the 
SAR (Specific Absorption Rate). This minimum distance eliminates any radio-
frequency exposure risk and complies with the FCC requirements for RFID 
technologies.  There is no cost to participate in this study, but you will receive a $25 gift 
card in return for participation. 

4. Why you are being invited to take part in a research study 
We invite you to take part in a research study because you are a healthy adult willing to place standard 
ECG leads on your torso and/or a Bellyband wearable fabric.  

5. What you should know about a research study 
• Someone will explain this research study to you. 
• Whether or not you take part is up to you. 
• You can choose not to take part. 
• You can agree to take part now and change your mind later. 
• If you decide to not be a part of this research no one will hold it against you. 
• Feel free to ask all the questions you want before you decide. 

6. Who can you talk to about this research study? 
If you have questions, concerns, or complaints, or think the research has hurt you, talk to the research 
team at William Mongan: 215-895-0286 
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This research has been reviewed and approved by an Institutional Review Board (IRB). An IRB 
reviews research projects so that steps are taken to protect the rights and welfare of human subjects 
taking part in research.  You may talk to them at (215) 762-3944 or email HRPP@drexel.edu for any 
of the following: 

• Your questions, concerns, or complaints are not being answered by the research team. 
• You cannot reach the research team. 
• You want to talk to someone besides the research team. 
• You have questions about your rights as a research subject. 
• You want to get information or provide input about this research. 

7. Why are we doing this research? 

We are currently conducting a research study  to evaluate the practical feasibility of a wireless and battery 
free heart rate and respiratory monitor based on RFID technology.  

8. How long will the research last? 
We expect that you will be in this research study for approximately 30 minutes for your heart and 
respiratory rate in addition to about fifteen minutes of set up time. 

9. How many people will be studied? 
We expect about 25 people here will be in this research study out of 25 people in the entire study 
nationally. 

10. What happens if I say yes, I want to be in this research? 
1. The research will be conducted at the Bossone Research Center of Drexel University. 
2. You will have a pair of ECG electrodes attached to your chest to monitor your heart rate using 

the wireless heart rate monitor.  In the hospital setting, these will be deployed by hospital staff. 
3. A smart-fabric Bellyband will be worn about your abdominal area for respiratory rate 

monitoring.  In the hospital setting, these will be deployed by hospital staff. 
4. This is a one time study, so no follow up will be needed. You will be monitored for a 

predetermined time not exceeding 10 minutes.  
5. We would like to take a photo of the truncal area with the monitor. The photo will only be of 

the truncal area, to include the ECG electrodes and Bellyband, and you will not be able to be 
identified form the photo. 

6. Standard disposable commercial electrodes will be used to sense ECG signals for hygiene and 
to minimize the risk of skin irritation. The heart rate monitoring device is a very low power 
device (tens of microwatts) and thus poses no risk of electrical injury to the subject.  

7. In order to mitigate the radio-frequency exposure of the subject, and to comply with the FCC 
standard, we will utilize an off-the-shelf RFID interrogator installed at a proper reading 
distance. That is, the distance between the RFID interrogator and the bellyband will be at least 
25 cm. In this way, we will be able to read the bellyband data and, at the same time, to reduce 
the SAR (Specific Absorption Rate). This minimum distance eliminates any radio-frequency 
exposure risk and complies with the FCC requirements for RFID technologies. 

11. What are my responsibilities if I take part in this research? 
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If you take part in this research, it is very important that you:  

• Follow your physician’s or researcher’s instructions. 
• Tell your study physician or researcher right away if you have a complication or injury. 

12. What happens if I do not want to be in this research? 
You may decide not to take part in the research and it will not be held against you. 

13. What happens if I say yes, but I change my mind later? 
You agree to take part in the research now and stop at any time it will not be held against you. 
If you stop being in the research, already collected data may not be removed from the study database. 
You will be asked whether the researcher can collect data from your routine medical care. If you agree, 
this data will be handled the same as research data.  

15. Do I have to pay for anything while I am on this study? 
There is no cost to you for participating in this study.   

16. Will being in this study help me any way? 
There are no benefits to you from your taking part in this research. We cannot promise any benefits to 
others from your taking part in this research. However, possible benefits to others include a less 
invasive wearable continuous heart and respiratory monitor.  

17. What happens to the information we collect? 
Efforts will be made to limit your personal information, including research study and medical records, 
to people who have a need to review this information. We cannot promise complete secrecy. 
Organizations that may inspect and copy your information include the IRB and other representatives of 
this organization.  
The information we collect will not be personally identifiable, and may be used for commercialization, 
FDA clearance, and academic publications. 
 

19. What else do I need to know? 
The sponsor National Science Foundation is paying Drexel University to conduct the study. 
 
It is important for you to follow your physician’s instructions including notifying your study physician 
as soon as you are able of any complication or injuries that you experienced.  
 
If you agree to take part in this research study, we will pay you a $25 gift card for your time and effort.  
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Federal law provides additional protections of your personal information that are described here. 

A. Individually Identifiable Health Information That Will Be Collected 
The following personal health information about you will be collected and used during the research 
study and may be given out to others:  

• Your name; 
• Information from laboratory tests, blood and urine tests, x-rays, physical exams and other tests 

or procedures described in this consent form. 

B. Who Will See and Use Your Health Information within Drexel University  
The researcher and other authorized individuals involved in the research study at Drexel University 
will see your health information during and may give out your health information during the research 
study. These include the researcher and the research staff, the institutional review board and their staff, 
legal counsel, research office and compliance staff, officers of the organization and other people who 
need to see the information in order to conduct the research study or make sure it is being done 
properly. Your health information may be disclosed or transmitted electronically. 

C. Who Else May See and Use your Health Information 
Other persons and organizations outside of Drexel University may see and use your health information 
during this research study. These include: 

• Governmental entities that have the right to see or review your health information, such as The 
Office for Human Research Protections, and the Food and Drug Administration 

• Doctors and staff at the hospital where this research study will take place. 
• Doctors and staff at other places that are participating in the research study. 
• The sponsor of this research study and persons that the sponsor may hire to work on the 

research study. The name of the sponsor is National Science Foundation 
• A data safety monitoring board. 

If your health information is given to someone not required by law to keep it confidential, then that 
information may no longer be protected, and may be used or given out without your permission. 

D. Why your health information will be used and given out 
Your health information will be used and given out to carry out the research study and to evaluate the 
results of the study. Your health information will also be used so the sponsor may receive FDA 
approval for a new product or drug resulting from this research study. 
Your information may also be used to meet the reporting requirements of governmental agencies. 

E. If you do not want to give authorization to use your health information 
You do not have to give your authorization to use or give out your health information. However, if you 
do not give authorization, you cannot participate in this research study. 

F. How to cancel your authorization 
At any time you may cancel your authorization to allow your health information to be used or given 
out by sending a written notice to Human Research Protection at 1505 Race Street, 7th floor, Bellet 
Building, Mail Stop 444, Philadelphia, Pennsylvania, 19102.  If you leave this research study, no new 
health information about you will be gathered after you leave. However, information gathered before 
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that date may be used or given out if it is needed for the research study or any follow-up. 

G. When your authorization ends 
Your authorization to use and give out your health information will end when the research study is 
finished. 
After the research study is finished, your health information will be maintained in a research database. 
Drexel University shall not re-use or re-disclose the health information in this database for other 
purposes unless you give written authorization to do so. However, the Drexel University Institutional 
Review Board may permit other researchers to see and use your health information under adequate 
privacy safeguards. 

H. Your right to inspect your medical and research records 
You have the right to look at your medical records at any time during this research study. However, the 
researcher does not have to release research information to you if it is not part of your medical record. 

I.  Information about Genetic Information Nondiscrimination Act (GINA) 
The Federal law, called the Genetic Information Nondiscrimination Act (GINA), generally makes it 
illegal for health insurance companies, group health plans, and most employers to discriminate against 
you based on your genetic information.  This law generally will protect you in the following ways: 
• Health insurance companies and group health plans may not request your genetic information that 

we get from this research study.  
• Health insurance companies and group health plans may not use your genetic information when 

making decisions regarding your eligibility or premiums.  
• Employers with 15 or more employees may not use your genetic information that we get from this 

research study when making a decision to hire, promote, or fire you or when setting the terms of 
your employment. 

 
However, GINA will not protect you if you already have a genetic disease or disorder and does not 
prohibit discrimination on the basis of an existing genetic disease or disorder.  In addition, this new 
Federal law does not protect you against genetic discrimination by companies that sell life insurance, 
disability insurance, or long-term care insurance. 
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Signature Block for Capable Adult 
Your signature documents your permission to take part in this research. 

DO NOT SIGN THIS FORM AFTER THIS DATE  06/20/2019 

   

Signature of subject  Date 
  

Printed name of subject 
   

Signature of person obtaining consent  Date 

   

Printed name of person obtaining consent   
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Signature Block for Adult Unable to Consent 

DO NOT SIGN THIS FORM AFTER THIS DATE   

   

Printed name of subject   
I am willing to serve as a legally authorized representative for the above named subject. The investigators have 
explained to me the role and responsibilities of a legally authorized representative. My signature documents my 
permission for the above named subject to take part in this research. 

   

Signature of legally authorized representative  Date 

  
Printed name of legally authorized representative 

 

Address 

 

City, State, ZIP 

   

Phone  Email 

Highest 
The following individuals in descending order of priority are capable of serving as a legally authorized 
representative (LAR). Check the category that best describes the LAR’s relationship to the subject. 

 Health care agent appointed by the subject in a Power of Attorney; 
 Court-appointed guardian authorized to consent to the subject’s participation in the protocol in a current court 

order issued within the subject’s jurisdiction; 
 Spouse or domestic partner (unless an action for divorce is pending) and adult children of the subject who are 

not the children of the spouse or domestic partner; 
 Adult child; 
 Natural or adoptive parent; 
 Adult brother or sister. 
 Adult grandchild 
 

Lowest 
Adult who has knowledge of the subject’s preferences and values, including, but not limited to, religious and 
moral beliefs, to assess how the principal would make health care decisions.  Unless related by blood, 
marriage, or adoption, the adult may not be the principal’s attending physician or other health care provider nor 
an owner, operator or employee of a health care provider in which the principal receives care. 

   

Signature of person obtaining consent  Date 

  

Printed name of person obtaining consent  
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Drexel University  
Consent to Take Part 
In a Research Study 

At Hahnemann Hospital  

If you are a parent or legal guardian of a child who may take part in this study, permission from you is 
required.  The assent (agreement) of your child may be required.  When we say “you” in this consent 
form , we mean you or your child; when we say “we” in this consent form, we mean Drexel 
University. 

1. Title of research study: “PASSIVE RFID BASED HEART RATE MONITOR” to 
wirelessly monitor heart rate. (1604004440) 

2. Researcher: Timothy Kurzweg   
 

3.Concise Summary of Key Information:  
 

Globally, cardiovascular diseases continue to remain the leading cause of death; killing 
more people than any other disease. This alone makes a strong case for development of 
convenient continuous cardiac monitors. Additionally, heart rate monitors have also 
started finding applications in diverse areas from optimizing athletic performance to 
monitoring health for those employed in professions where real time health monitoring 
may help mitigate risks (e.g. firefighters). Several technologies have been utilized for 
heart rate monitoring. These include, but are not limited to, ballistocardiography, pulse 
oximetry, phonocardiogram and electrocardiogram.  

Over the last decade, there has been a big push towards the development of wearable 
health monitoring devices. The underlying belief is that wearable devices will allow for 
affordable round-the-clock monitoring which will enable early detection and prevention 
of many diseases. Heart rate monitors and electrocardiogram (ECG) devices are a group 
of devices that have received wide attention from the wearable devices community. 
However, research on ECG monitors has been focused on making better wearable 
sensors and integrating them with a minimal profile. To wirelessly transmit the cardiac 
information, researchers have largely continued using battery-powered methods like 
bluetooth and cellular technologies or prototype RF transmitters. Batteries add to the 
size and weight of wearable systems, making them obtrusive and cumbersome. A 
wearable system benefits from being battery-free as the absence of batteries reduces the 
system down time for battery replacement and charging.  

Passive RFID (Radio Frequency Identification) tags work on wireless power harvested 
from a RFID reader and thus do not require batteries for operation. RFID tags have been 
conventionally used as product identification tools similar to barcodes. For these tags to 
be used in sensor networks, they have to be capable of transmitting sensor data along 
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with the tag ID. In its simplest form, an RFID tag can be used as a one bit transmission 
device by turning the RFID tag on/off and having an RFID reader detect the tag's state. 
For instance, the reader detects a `1' when the tag is on and a `0' when the tag is off. A 
similar device that uses two RFID tags has been proposed in literature. Contemporary 
RFID tags are capable of transmitting multiple bits of optional data along with the 
default tag ID. However, additional circuitry like analog to digital converters (ADCs) 
and microcontrollers are required to digitize and embed the sensor data with the tag ID. 
These additional components not only increase the size of the system but also add to its 
power requirements. Another drawback of such systems is the requirement of 
significant transmitted data redundancy to achieve a degree of reliability. For example, 
the electroencephalogram (EEG) system proposed in literature requires 92% data 
overhead and has a range of only 0.8m. The requirement for data overhead adds to the 
system power consumption.  If this power is harvested wirelessly, higher power demand 
significantly degrades the system's range. The proposed RFID heart monitoring device 
has been designed by leveraging battery-free transmission capabilities of RFID tags 
while using minimal additional components and not requiring any data overheads.  This 
device can potentially be used to wirelessly track a person's heart rate and location 
while he is mobile and could potentially limit the need for a patient to be tethered to a 
cardiac monitor on the hospital bed.    
This research is being performed in order to develop a less invasive wearable 
heart/respiratory monitoring system that requires no external electrical power to 
operate.  Consent is being sought for this research is voluntary.  If you consent to the 
study, you will participate for approximately 30 minutes, during which a pair of ECG 
electrodes will be attached to the subject’s chest to monitor heart rate via the wireless 
heart rate monitor.   A smart-fabric Bellyband will be worn about the abdominal area 
for respiratory rate monitoring.  Normal respiratory and heart activities will be 
monitored for approximately 30 minutes, and then the electrodes and Bellyband will be 
removed.  There is no direct benefit from this study as traditional monitors will be used 
as needed outside of this research study; however, the data collected will be used to 
develop wireless, wearable monitoring technologies. In order to mitigate the radio-
frequency exposure of the subject, and to comply with the FCC standard, we will utilize 
an off-the-shelf RFID interrogator installed at a proper reading distance. That is, the 
distance between the RFID interrogator and the bellyband will be at least 25 cm. In this 
way, we will be able to read the bellyband data and, at the same time, to reduce the 
SAR (Specific Absorption Rate). This minimum distance eliminates any radio-
frequency exposure risk and complies with the FCC requirements for RFID 
technologies.  There is no cost to participate in this study, but you will receive a $25 gift 
card in return for participation. 

4. Why you are being invited to take part in a research study 
We invite you to take part in a research study because you have a healthy infant and are willing to 
place standard ECG leads on his/her torso and/or a Bellyband wearable fabric.  

5. What you should know about a research study 
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• Someone will explain this research study to you. 
• Whether or not you take part is up to you. 
• You can choose not to take part. 
• You can agree to take part now and change your mind later. 
• If you decide to not be a part of this research no one will hold it against you. 
• Feel free to ask all the questions you want before you decide. 

6. Who can you talk to about this research study? 
If you have questions, concerns, or complaints, or think the research has hurt you, talk to the research 
team at William Mongan: 215-895-0286  

This research has been reviewed and approved by an Institutional Review Board (IRB). An IRB 
reviews research projects so that steps are taken to protect the rights and welfare of human subjects 
taking part in research.  You may talk to them at (215) 762-3944 or email HRPP@drexel.edu for any 
of the following: 

• Your questions, concerns, or complaints are not being answered by the research team. 
• You cannot reach the research team. 
• You want to talk to someone besides the research team. 
• You have questions about your rights as a research subject. 
• You want to get information or provide input about this research. 

7. Why are we doing this research? 

We are currently conducting a research study  to evaluate the practical feasibility of a wireless and battery 
free heart rate and respiratory monitor based on RFID technology.  

8. How long will the research last? 
We expect that you will be in this research study for approximately 30 minutes for your heart and 
respiratory rate in addition to about fifteen minutes of set up time. 
9. How many people will be studied? 

We expect about 25 people here will be in this research study out of 25 people in the entire study 
nationally. 

10. What happens if I say yes, I want to be in this research? 
1. The research will be conducted at Hahnemann Hospital. 
2. You will have a pair of ECG electrodes attached to your chest to monitor your heart rate using 

the wireless heart rate monitor.  In the hospital setting, these will be deployed by hospital staff. 
3. A smart-fabric Bellyband will be worn about your abdominal area for respiratory rate 

monitoring.  In the hospital setting, these will be deployed by hospital staff. 
4. This is a one time study, so no follow up will be needed. You will be monitored for a 

predetermined time not exceeding 10 minutes.  
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5. We would like to take a photo of the truncal area with the monitor. The photo will only be of 
the truncal area, to include the ECG electrodes and Bellyband, and you will not be able to be 
identified form the photo. 

6. Standard disposable commercial electrodes will be used to sense ECG signals for hygiene and 
to minimize the risk of skin irritation. The heart rate monitoring device is a very low power 
device (tens of microwatts) and thus poses no risk of electrical injury to the subject.  

7. In order to mitigate the radio-frequency exposure of the subject, and to comply with the FCC 
standard, we will utilize an off-the-shelf RFID interrogator installed at a proper reading 
distance. That is, the distance between the RFID interrogator and the bellyband will be at least 
25 cm. In this way, we will be able to read the bellyband data and, at the same time, to reduce 
the SAR (Specific Absorption Rate). This minimum distance eliminates any radio-frequency 
exposure risk and complies with the FCC requirements for RFID technologies. 

11. What are my responsibilities if I take part in this research? 
If you take part in this research, it is very important that you:  

• Follow your physician’s or researcher’s instructions. 
• Tell your study physician or researcher right away if you have a complication or injury. 

12. What happens if I do not want to be in this research? 
You may decide not to take part in the research and it will not be held against you. 

13. What happens if I say yes, but I change my mind later? 
You agree to take part in the research now and stop at any time it will not be held against you. 
If you stop being in the research, already collected data may not be removed from the study database. 
You will be asked whether the researcher can collect data from your routine medical care. If you agree, 
this data will be handled the same as research data.  

15. Do I have to pay for anything while I am on this study? 
There is no cost to you for participating in this study.   

16. Will being in this study help me any way? 
There are no benefits to you from your taking part in this research. We cannot promise any benefits to 
others from your taking part in this research. However, possible benefits to others include a less 
invasive wearable continuous heart and respiratory monitor.  

17. What happens to the information we collect? 
Efforts will be made to limit your personal information, including research study and medical records, 
to people who have a need to review this information. We cannot promise complete secrecy. 
Organizations that may inspect and copy your information include the IRB and other representatives of 
this organization.  

185



 Authorization to Use and Disclose Protected Health Information
 Page 5 of 8 

 

The information we collect will not be personally identifiable, and may be used for commercialization, 
FDA clearance, and academic publications. 

19. What else do I need to know? 
The sponsor National Science Foundation is paying Drexel University to conduct the study. 
 
It is important for you to follow your physician’s instructions including notifying your study physician 
as soon as you are able of any complication or injuries that you experienced.  
 
If you agree to take part in this research study, we will pay you a $25 gift card for your time and effort.  
 

Federal law provides additional protections of your personal information that are described here. 

A. Individually Identifiable Health Information That Will Be Collected 
The following personal health information about you will be collected and used during the research 
study and may be given out to others:  

• Your name; 
• Information from laboratory tests, blood and urine tests, x-rays, physical exams and other tests 

or procedures described in this consent form. 

B. Who Will See and Use Your Health Information within Drexel University  
The researcher and other authorized individuals involved in the research study at Drexel University 
will see your health information during and may give out your health information during the research 
study. These include the researcher and the research staff, the institutional review board and their staff, 
legal counsel, research office and compliance staff, officers of the organization and other people who 
need to see the information in order to conduct the research study or make sure it is being done 
properly. Your health information may be disclosed or transmitted electronically. 

C. Who Else May See and Use your Health Information 
Other persons and organizations outside of Drexel University may see and use your health information 
during this research study. These include: 

• Governmental entities that have the right to see or review your health information, such as The 
Office for Human Research Protections, and the Food and Drug Administration 

• Doctors and staff at the hospital where this research study will take place. 
• Doctors and staff at other places that are participating in the research study. 
• The sponsor of this research study and persons that the sponsor may hire to work on the 

research study. The name of the sponsor is National Science Foundation 
• A data safety monitoring board. 

If your health information is given to someone not required by law to keep it confidential, then that 
information may no longer be protected, and may be used or given out without your permission. 
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D. Why your health information will be used and given out 
Your health information will be used and given out to carry out the research study and to evaluate the 
results of the study. Your health information will also be used so the sponsor may receive FDA 
approval for a new product or drug resulting from this research study. 

Your information may also be used to meet the reporting requirements of governmental agencies. 

E. If you do not want to give authorization to use your health information 
You do not have to give your authorization to use or give out your health information. However, if you 
do not give authorization, you cannot participate in this research study. 

F. How to cancel your authorization 
At any time you may cancel your authorization to allow your health information to be used or given 
out by sending a written notice to Human Research Protection at 1505 Race Street, 7th floor, Bellet 
Building, Mail Stop 444, Philadelphia, Pennsylvania, 19102.  If you leave this research study, no new 
health information about you will be gathered after you leave. However, information gathered before 
that date may be used or given out if it is needed for the research study or any follow-up. 

G. When your authorization ends 
Your authorization to use and give out your health information will end when the research study is 
finished. 

After the research study is finished, your health information will be maintained in a research database. 
Drexel University shall not re-use or re-disclose the health information in this database for other 
purposes unless you give written authorization to do so. However, the Drexel University Institutional 
Review Board may permit other researchers to see and use your health information under adequate 
privacy safeguards. 

H. Your right to inspect your medical and research records 
You have the right to look at your medical records at any time during this research study. However, the 
researcher does not have to release research information to you if it is not part of your medical record. 

I.  Information about Genetic Information Nondiscrimination Act (GINA) 
The Federal law, called the Genetic Information Nondiscrimination Act (GINA), generally makes it 
illegal for health insurance companies, group health plans, and most employers to discriminate against 
you based on your genetic information.  This law generally will protect you in the following ways: 
• Health insurance companies and group health plans may not request your genetic information that 

we get from this research study.  
• Health insurance companies and group health plans may not use your genetic information when 

making decisions regarding your eligibility or premiums.  
• Employers with 15 or more employees may not use your genetic information that we get from this 

research study when making a decision to hire, promote, or fire you or when setting the terms of 
your employment. 
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However, GINA will not protect you if you already have a genetic disease or disorder and does not 
prohibit discrimination on the basis of an existing genetic disease or disorder.  In addition, this new 
Federal law does not protect you against genetic discrimination by companies that sell life insurance, 
disability insurance, or long-term care insurance. 
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Signature Block for Children 
Your signature documents your permission for the named child to take part in this research. 

DO NOT SIGN THIS 
FORM AFTER THIS 

 

 06/20/2019 

 

 Printed name of child 
   

Signature of parent or individual 
legally authorized to consent to the 

child’s general medical care 

 Date 

 
 Parent 
 Individual legally authorized to consent to the child’s general 

medical care (See note below) 

Printed name of parent or individual 
legally authorized to consent to the 

child’s general medical care 
Note: Investigators are to ensure that individuals who are not parents can demonstrate their legal authority to consent to the 
child’s general medical care. Contact legal counsel if any questions arise. 

   

Signature of parent  Date 
 

 Printed name of parent 
If signature of second parent not obtained, indicate why: (select one) 
 The IRB determined that the 

permission of one parent is 
sufficient.  

 Second parent is deceased 
 Second parent is unknown  

 Second parent is incompetent 
 Second parent is not reasonably available 
 Only one parent has legal responsibility for the care and custody of the child 

 

   

Signature of person obtaining consent and assent  Date 

   

Printed name of person obtaining consent   
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APPROVED  
Human Research Protection 
Protocol # 1604004440R002 
Approval Date: 06/21/2018 
Expiration Date: 06/20/2019 
 

Version 01-29-2017 
 

  
  
  
   

 
Drexel University  

Recruiting Volunteers for a Research Study  
  
 
Research Title  
“PASSIVE RFID BASED HEART RATE MONITOR” to wirelessly monitor heart rate.  

  
Research Objectives*  

 
Wireless and battery-free heart rate monitors can allow for continuous uninterrupted monitoring for a 
variety of applications for clinical and fitness applications. Researchers at Drexel University Electrical 
and Computer Engineering Department are conducting a research study to evaluate the practical 
feasibility of a wireless and battery free heart rate, muscle contraction and respiratory rate monitor 
based on RFID technology. For each participant, the study involves collecting a simple electro-
cardiogram (ECG) signal as well as wearing a wireless RFID-based respiratory monitoring device, and 
takes less than a total of 30 minutes to complete.  

   
Information for Research Subjects Eligibility  
 
You must be at least 18 years old to participate in this study.  

  
Remuneration  
 
You will be given a $25 gift card for participation in this study. 
  
Location of the research and person to contact for further information  
This research is approved by the Institutional review board.  
If you are interested in participating in this study, please contact  

William Mongan 
Telephone number: 215-895-0286 Room: University Crossings 100D 

 
(This research is conducted by a researcher who is a member of Drexel University or Drexel University 
College of Medicine).  
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William M. Mongan, Jr.

Contact
Information

William Mongan Phone: (484) 442-0821
Philadelphia, Pennsylvania USA E-Mail: bill@billmongan.com

WWW: billmongan.com
LinkedIn: www.linkedin.com/in/billmongan

Education Doctor of Philosophy
PhD in Electrical and Computer Engineering

Drexel University

Philadelphia, Pennsylvania 2013-2018

• PhD Dissertation: Predictive Analytics on Real-Time Biofeedback for Actionable Classification
of Activity State

• PhD Advisor: Dr. Adam Fontecchio
• Cumulative Graduate GPA: 3.91 on a 4.00 index

Master of Science
Computer Science, College of Engineering

Drexel University

Philadelphia, Pennsylvania 2005-2008

• MS Thesis in Computer Science: A Service-Based Web Portal for Integrated Reverse Engineering
and Program Comprehension

• MS Thesis Advisor: Dr. Spiros Mancoridis
• Graduate Research Assistant for the College of Engineering under the Applied Communications

and Information Networking (ACIN) Project, and for the Department of Computer Science under
the Software Engineering Research Group (SERG)

• GPA: 3.86 on a 4.00 index

Master of Science
Science of Instruction, School of Education
PA Instructional Certificate in Mathematics

Drexel University

Philadelphia, Pennsylvania 2005-2008

• Earned a Secondary Mathematics (Pennsylvania In-State: Mathematics Grades 7-12) teaching
certification in Pennsylvania

• GPA: 3.86 on a 4.00 index
• Served as a graduate fellow for the educational outreach program in the NSF GK-12 Program at

the School District of Philadelphia at two schools and grades 5-8 (2006-2008)

Bachelor of Science, Magna Cum Laude
Computer Science, College of Engineering

Drexel University

Philadelphia, Pennsylvania 2000-2005

• Undergraduate Research Assistant
• GPA: 3.79 on a 4.00 index
• Minor in Mathematics, College of Arts and Sciences
• Teaching Assistant for Systems Architecture I and II (CS281, CS282): 2003-2005

Selected Faculty
Appointments and
Teaching

Teaching Professor (full)
Computer Science

Drexel University

Philadelphia, Pennsylvania 2017-Present

• Member of the Provost’s DC Programming Summit, 2018-Present
• Delaware County Intermediate Unit (DCIU) STEM Education Council, 2017-Present
• Member of the Steinbright Faculty Advisory Board, 2017-Present
• Member of the CCI Undergraduate Data Science Curriculum Committee, 2016-Present
• Member of the Isaac L. Auerbach Innovation Award Committee, 2017-2018
• Member of the Faculty Data and Assessment Committee, Chair of the Survey Baseline Data

Group Subcommittee 2017-2018
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• Member of University Advising Implementation Committee Workgroup on Student Major Changes
across the University, 2017.

• Member of the Faculty Senate Budget Planning and Development (BP&D) Committee, 2017-
2018

• Cohort participant in Drexel Leaders 2020 professional development program, 2017
• Member of the University Program Alignment and Review (PAR) Committee, 2016-2019
• Member of the University Advising Implementation Committee (UAIC), 2016-Present
• Member of the Center for the Advancement of STEM Teaching and Learning Excellence (CAS-

TLE) network at Drexel University, 2016-Present

Associate Department Head for
Undergraduate Affairs
Computer Science

Drexel University

Philadelphia, Pennsylvania 2015-Present

• Chair of the CCI Undergraduate Computing Curriculum Committee
• Chair of the CCI Program Alignment and Review (PAR) Committee 2015-2016
• Acting Department Head August, 2015-January, 2016
• Member of the CCI Faculty/Academic Council
• Member of the CCI College Curriculum Committee, co-Chair 2016-2017
• Member of CCI Computing Assessment and Accreditation Committee, Chair 2012-2016
• Program Assessment Coordinator for three programs within the Department of Computer Science

and one program within the Software Engineering Department

Associate Teaching Professor
Computer Science

Drexel University

Philadelphia, Pennsylvania 2012-2017

• Member of the Dean Search Committee for the College of Nursing and Health Professions
(CNHP), representing the Faculty Senate, 2016-2017

• Member of the Philly Codefest Advisory Board, 2016-2017
• Member of the University Advising Steering Committee and Chair of Advising Infrastructure

and Workflow Subcommittee, 2016-2017
• Director of Undergraduate Affairs for the Department of Computer Science, 2014-2015
• University Faculty Senator from CCI, 2014-2017
• Recording Secretary for the CCI Senate Caucus
• Member of the CCI Faculty Search Committee 2013-2015
• Member of the First-Year CCI Curriculum Committee
• Member of the CCI Computing Faculty Resources Committee, 2014-2016
• Member of the College of Engineering (COE) Assessment Executive Committee

Lecturer (Visiting)
Computer and Information Science

University of Pennsylvania

School of Engineering and Applied Science 2012-2013

Assistant Teaching Professor
Computer Science
Electrical and Computer Engineering

Drexel University

Philadelphia, Pennsylvania 2011-2012

• Chair of the CS Department Assessment Committee
• Member of the COE Assessment Committee

Instructor / Auxiliary Professor
Computer Science
Electrical and Computer Engineering

Drexel University

Philadelphia, Pennsylvania 2008-2011

• Support external course projects in Circuit Design and Operating System Internals
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• Chair of the CS Undergraduate Retention / Core Curriculum Committee
• Member of the CS Undergraduate Curriculum Committee
• Instructor for the Drexel University Computing Academy (DUCA) High School Summer Pro-

gram: (formerly the Pennsylvania Governor’s School in Information, Society and Technology)
• Developed a new track and curriculum for the CS Architecture Track concentration

Courses Taught
• Independent Study Advisor: RFID Multisensor Fusion (CSI499)
• Independent Study Advisor: Forecasting on Medical Data (CSI499, CSI199)
• Guest Lecturer for Collaborative Intelligent Radio Networks (CIRN) Design (ECE T680 Graduate

Course)
• Independent Study Advisor: Biomedical Signal Processing (CSI499)
• Independent Study Advisor: Advanced Web Services and Mobile Application Development

(CSI499)
• Independent Study co-Advisor: Social Media Analytics (CS498)
• Instructor and co-Author for Computing and Informatics Design Project (CI106, CS280)
• Instructor and co-Author for Computing and Informatics Design I (CI101)
• Independent Study Advisor: Computing and Informatics Design Experience (CS498)
• Independent Study Advisor: Big Data and Advanced Analytics (CS498)
• Instructor and Author for “Making Apps” Honors course for the university (HNRS202)
• Instructor and Author for Processor Architecture and Analysis (CS352, CS480)
• Independent Study Advisor: Advanced Topics in Operating Systems (CS498)
• Instructor for Computer Systems II: Digital Systems Organization and Design (CIT595 Graduate

Course, Visiting at the University of Pennsylvania)
• Instructor and Author for Web and Mobile Application Development (CS275, CS280, CS480,

CS690)
• Instructor for ESL097: the King Abdullah University of Science and Technology Introduction

to C++ course for high school seniors for the Drexel University English Language Center (joint
grant between Drexel University and the University of Pennsylvania)

• Guest Lecturer for Operating Systems (CS543 Graduate Course)
• Guest Lecturer for Computer Networks (CS544 Graduate Course)
• Instructor for Systems Architecture I and II (CS281, CS282, CS498)
• Instructor for Computer Organization (ECEC490)
• Instructor and Author for Systems Programming (CS283, ECEC353)
• Instructor for Concurrent Programming (CS361, CS498, ECEC490)
• Instructor for Processor Design (ECEC490)
• Instructor and Author for Operating Systems (CS370, ECEC421, ECEC490)
• Instructor for Computer Networks (CS472, ECEC357, ECEC490)
• Instructor for Computer Structures (ECEC355)
• Instructor and Author for Machine Organization (CS680 Graduate Course)
• Instructor for Internet Arch and Protocols (ECEC432)
• Instructor for Network Programming (ECEC433)
• Instructor and Author for Special Topics in Network Security (ECEC490)
• Instructor for Programming for Engineers (ECE203)
• Independent Study Advisor: Special Topics in Computer Architecture (CS498)
• Independent Study Advisor: Advanced Topics in CPU Design (CS498, ECEC497)

Selected
Professional and
Research
Experience

Research Assistant Drexel University
Philadelphia, Pennsylvania 2001-2008

• Researched projects and tools for reverse engineering, software maintenance and program under-
standing with the Software Engineering Research Group (SERG)

• Developed REportal: A Web Based Reverse Engineering Portal1 and re-engineered it into a
maintainable, distributed Service Oriented Architecture

• Developed Abstract Software Cluster Visualization tool using XML

1http://reportal.cs.drexel.edu
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Technical Writer and Research Assistant Drexel University ACIN Program
Camden, New Jersey 2005-2008

• Performed research, development and technical writing related to reverse engineering and software
architecture with US Army CERDEC RDECOM C2D under the Applied Communications and
Information Networking (ACIN) Project

• Served as a contributing member of the US Army Intelligent Agent (IA) sub-IPT group
• Researched tools and best practices to investigate software engineering and reverse engineering

methods for distributed, multi-agent systems
• Co-authored the Agent Systems Reference Model (ASRM) and the Agent Systems Reference

Architecture (ASRA)

Application Developer and IT Manager David M. Banet and Associates
Exton, Pennsylvania 2001-2005

• Developed customized software solutions to simplify business tasks, including:
◦ Payroll integration system to compute payroll benefit deductions and integrate with client

proprietary payroll systems
◦ XML based electronic audit system
◦ Specialized web-based services for clients

• Built and maintained network domain and all associated servers, workstations and integrated
business tools

IT Consultant Consulting Group, Inc.
Malvern, Pennsylvania 2004

• Served as IT technician for the office during Open Enrollment period
• Assisted in the maintenance of network domain and associated workstations
• Provided technical support in troubleshooting workstations and servers

Volunteer Chester-Wallingford Red Cross
Chester, Pennsylvania 2003

• Replaced token-ring computer network with 10/100 ethernet and internet connectivity on a
volunteer basis

Instructional Technology Consultant Upper Darby School District
Upper Darby, Pennsylvania 1998-2003

• Designed and managed web site for Upper Darby School District
• Created Upper Darby School District Instructional Intranet (RoyalNet) and developed systems

to automate content management
• Presented Act 48 training workshops on Filemaker Pro and Dreamweaver for staff, teachers and

principals, to maintain and add value to the production of the above district-wide systems
• Interviewed for an Upper Darby School Board seat in November, 2000
• Served on the Upper Darby Technology and Grant Writing Committee under the school board

in March, 2001

Application Developer and Consultant StarComm Development, Inc.
Upper Darby, Pennsylvania 1999-2002

• Developed and maintained dynamic, database-driven internet applications (ASPs) for clients
• Provided development support on FileMaker programming and educational projects for various

companies and educational institutions
• Assisted in the development process and provided technical support for Drexel University’s online

college application system

Web Application Developer Boss Entertainment
King of Prussia, Pennsylvania 2001

• Designed, developed, managed and maintained e-Commerce web site
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• Supported development of golf course management system

Script Reviewer Bergwall Productions
Kennett Square, Pennsylvania 1998-1999

• Read, reviewed, and edited scripts for Bergwall Productions instructional computer videos

Publications and
Grants

Grants

1. NSF Smart and Connected Health (SCH): Smart and Connected Health for Neonatal Trans-
port (co-Principal Investigator with Kapil R. Dandekar, Principal Investigator, and Vineet
Bhandari, Anup Das, Genevieve Dion, co-Principal Investigators), 2019-2022, $792,008; Pend-
ing.

2. Internet of Things for Future Smart City Philadelphia (Co-Principal Investigator with Kapil R.
Dandekar, Principal Investigator, et al), 2018; Drexel DARE Proposal, $250,000 (estimated);
Pending.

3. CyberCorps Scholarship for Service (SfS) Site (co-Principal Investigator with Xia Lin, Dario
Salvucci, Ali Shokoufandeh, Brian Smith, co-Principal Investigators), 2018-2022; Pending.

4. NSF Computer and Network Systems (CNS): NeTS: Small (award number 1816387): Ar-
chitectures and Testbed for Functional Fabric RFID in the Internet of Things (co-Principal
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