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Abstract
Predictive Analytics on Real-Time Biofeedback for Actionable Classification of Activity State
William M. Mongan
Adam K. Fontecchio, Ph.D.

Continuous biomedical monitoring has the potential to improve quality-of-care for patients as well as
working conditions for medical practitioners over the current state-of-the-art. Currently, Emergency
Medical Technicians in the field carry monitoring equipment that can weigh over 50 Ibs, and manually
communicate information back to hospital physicians. For patients, medical monitoring is carried
out using tethered equipment that must remain attached for hours or days, and must be removed
when the patient must get up to walk or use the restroom. Data lapses during these disconnected
breaks can be misinterpreted by medical staff as a medical event, and true medical events can be
missed as a result of non-monitoring. Further, being still for extended periods of time can exacerbate
the very risks being treated, due to the increased risk of a blood clot while remaining stationary
during monitoring.

Radio Frequency Identification (RFID) technology is traditionally used as a battery-free chip
embedded into an item for inventory management. As the chip is placed within the field of an
RFID interrogator, one or more interrogation waves are reflected off of the chip and observed at the
interrogator site. The reflected signal is encoded by the chip with an identifier which is typically used
for inventory purposes. Multiple interrogation signals are typically employed to overcome collisions
and to ensure that a viable interrogation takes place while the chip is in range of the interrogator.
We take advantage of this property of RFID technology by knitting a metallic antenna around the
tag and embedding the system into a wearable garment in an unobtrusive way. We re-purpose
the use of RFID by observing small perturbations in the physical properties of the reflected signal
for each interrogation of the tag. As the wearer moves about, changes in the knit antenna shape
result in changes to the properties of the reflected signal as it is regularly and frequently polled by

the interrogator. These physical changes are small and subject to noise interference both from RF,



XV

movements in the environment around the subject, and movements by the subject directly; however,
we fuse signal processing and machine learning approaches to estimate biomedical properties of the
wearer such as respiratory rate, apnea, uterine contractions, and stationary limbs. As a result, we
introduce a wearable technology platform supported by real-time analytical software that enables

unobtrusive, continuous, ambulatory monitoring of strain or movement biomedical artifacts.

ABSTRACT






Part I

Introduction and Background



Chapter 1: Introduction

1.1 Overview and Motivation

Tethered movement-based medical monitoring devices are used in many inpatient and outpatient
settings, including Deep Venous Thrombosis (DVT) onset monitoring!, respiratory monitoring?,
and uterine monitoring during labor and delivery3. Continuous respiration monitoring has the
potential to predict the onset of acute medical conditions such as apnea? and sepsis®. Decreased
mobility can also lead to acute conditions such as venous thromboembolism (VTE)S. Additionally,
the use of graduated compression stockings are often used when patients are immobilized, but
discomfort during use and prolonged wear may result in reduced compliance” that could benefit
from an unobtrusive wearable solution.

Tethered monitors require surface area on the body, can be irritating to the body due to the
adhesive nature of the sensors, and require that the subject be relatively stationary in the mon-
itoring setting. Requiring stationarity can be counterproductive to the monitoring being sought,
and infeasible in circumstances that require several hours of monitoring when other bodily functions
arise. Emergency Medical Technicians (EMT) in the field carry monitoring equipment weighing
50-75 lbs in addition to potentially moving the patient, and have higher workload interpreting data
and communicating information back to hospital and physicians®. Further, telemetry of monitoring
data may require bulky, possibly tethered equipment, and emergency medical personnel percep-
tions of ease of use of devices may affect the likelihood of their perceived usefulness and subsequent
deployment?.

Using Radio Frequency Identification (RFID) tags embedded within a knitted antenna and wear-
able garment “Bellyband” (see Figure 1.3), both strain-gauge movements (such as stretching the
garment due to respiratory activity) as well as gross movement (such as walking around a room)
can be monitored wirelessly using a passive smart-garment device that requires no tethered power

source'’. A 900 MHz RFID interrogator supplies power wirelessly to the RFID tag via polling



with a wireless signal that is backscattered from the tag and antenna'®. RFID is traditionally used
in inventory management systems, such as that seen in highway toll collection, or retail inventory
tracking. As summarized in Figure 1.1, the RFID interrogator polls the field for any available RFID
tags, and any tags in the area are excited by the signal.

A UHF RFID chip embedded within a device
(here, a passport) performs a collision mitigation
and responds with a reflected signal encoded
with its EPC tag identifier

)

|| Ill Il 'III!’”
w121 3l 4l 5l 6l 7| '8

A UHF RFID antenna (here, a RFMAX S9028PCLJ)
is driven by an RFID interrogator (Impinj R420,
not pictured)

Figure 1.1: A general overview of physical RFID interrogation

As an example, for an infant respiratory monitoring application, the Bellyband is worn about the
abdomen or integrated into a onesie or other garment, which stretches and retracts with abdominal
respiratory motion. The antenna is regularly polled at a high rate (i.e., 90 Hz), and as the antenna
stretches, the strain is observed via changes in the RFID Received Signal Strength Indicator (RSSI)
signal power reflected from the antenna, as shown in Figure 1.2. An RFID-based heart rate monitor
is enabled via a low-power circuit that disables the RFID interrogation response for a short period
of time when an electrocardiogram (ECG) signal is observed from the heart 2. The circuit and the
Bellyband RFID chip are energized using power harvested from the wireless interrogation signal
itself, so no battery is required in either wearable device.

To facilitate implementation in the small space of an RFID tag, and with low- to no- power
consumption, a non-sophisticated singulation protocol is executed on the RFID tags to reduce the
number of collisions in the tag responses. The singulation protocol is based on the slotted-ALOHA
anti-collision algorithm in which each tag uses a random-number generator to decide whether to
respond in a given time slot. This process is repeated until all tags in the population have responded,

13;14

at which time the entire process repeats again The RFID backscatter response is encoded

CHAPTER 1: INTRODUCTION 1.1 OVERVIEW AND MOTIVATION



RSSI over Time for Stretching (0-20s) and Stationary (20-40s) Bellyband
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Figure 1.2: RSSI time-series data plotted over time for approximately 40 seconds; although
oscillatory motions can be observed every second, smaller perturbations in the data obscure
this signal due to the RFID interrogation frequency changing every 200 milliseconds

with a tag identifier such as the 96-bit Electronic Product Code (EPC, a.k.a., EPC96)'® and the
identifier is used as a primary key in a database to obtain the details of the tag being considered
(such as the retail product information, vehicle toll billing information, etc.). Because collisions
are expected when interrogating with RFID, the RFID signal is sent many times, and duplicate
backscatter responses are possible. These are resolved at the application layer, for example, by
ignoring duplicate interrogation responses within a certain time duration.

It is important to note that RFID was not designed to be used for continuous monitoring appli-
cations, especially within the biomedical domain. RFID readers are expensive, have no computation
or storage capabilities, and require external devices to utilize networking features. In real-time mon-
itoring applications, RFID technology is re-purposed so that a single tag is repeatedly interrogated,
and the duplicate backscatter responses are utilized for their signal properties, such as RSSI or sig-
nal phase. Repurposing RFID to track the small changes in signal backscatter properties presents
several technical, regulatory, and human challenges'®, which are detailed in Section 2.1. Among
these challenges is the need to separate changes in signal properties over time due to strain-gauge

motion (i.e., respiratory activity) from those changes due to fading and multipathing from other
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objects moving in the field and dynamically blocking or reflecting the signal, and from those changes
due to “ambient” motion artifacts from the subject that are unrelated to strain-gauge movement.
This is done with no processing on the wearable device, other than that to provide standard RFID
interrogation responses as described in this Section; all subject state estimation and processing is

performed wirelessly, away from the user, and on the interrogation side.

Figure 1.3: The knitted smart-garment device Bellyband uses an embedded RFID tag and
knit metallic thread antenna to monitor strain-gauge movements such as respiration (left) or a
uterine contraction (right).

Knitted wearable garment devices facilitate ubiquitous monitoring of biometrics: strain-gauge
sensing such as respiratory and uterine monitoring !¢, non-strain-gauge sensing such as walking or
other muscle movements'?, and sub-dermal electrodiagnostics such as heart monitoring'2. Embed-
ded RFID-based passive devices represent an Internet-of-Things (IoT) network that should be capa-
ble of telemetry via the interrogator and among legacy monitoring devices. A software framework
is needed to support the physical RFID and IoT infrastructure both efficiently and in compliance
with Health Insurance Portability and Accountability Act (HIPAA) regulations!®, and is detailed
in Section 4.2.

A wearable passive garment device avoids the need for a tethered monitoring system, so that
monitoring can be performed while standing or even ambulatory. We envision ubiquitous, unobtru-
sive monitoring platform that allows for the collection of individual baseline biometrics while healthy
without requiring active device deployment; active sensor deployment may only occur when monitor-
ing values are needed, such as when the patient is experiencing an abnormal state. It is known that

human physiological “normal ranges” are subject to individual variation that is not explained by
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a chronic condition'®. For example, individual physiological measures such as respiratory activity,
body surface temperature, and pulse are subject to variance due to age and physical activity and
can be correlated?’. Such relationships suggest that wearable monitors can aid in management of
chronic disease, such as Type 1 Diabetes, during periods of physical activity 2.

The RFID tag physical backscatter properties perturb as the knitted fabric antenna and smart
garment are stretched in space. The antenna is shaped to be resonant at a frequency within the
900 MHz Ultra High Frequency (UHF) RFID frequency band, and the impedance match attained
with that shape is degraded as the shape is deformed due to body movements. The signal strength,
for example, becomes weaker as the antenna is stretched, and returns to near optimal strength as
the antenna is relaxed. However, the tag itself may move closer to the RFID interrogator as the
wearer inhales, which strengthens the backscatter signal, working against this designed impedance
mismatch. Further, the interrogator frequency changes every 200 milliseconds by federal regulation,
without a corresponding change on the RFID tag and knitted antenna; this change in frequency
further degrades the impedance match between the antenna and a specific frequency within the
band.

Finally, variations in deployment result in variations in physical backscatter properties that
render thresholding approaches ineffective. For example, changes in wearer fit creates an initial
stretch in the antenna that may extend short of or beyond the shape required for optimal impedance
matching with the interrogation signal. Absorption of RF energy by the human body may vary
from body to body and result in a degraded or lack of backscatter response to the interrogator.
Variations within the physical garment can also result in signal variation, including displacement
of metallic threads causing a short of the RF signal with the chip assembly. Changing physical
environmental factors can interact dynamically with the signal, such as a person walking through
the area, or a conductive object in the field. As a result, the signal patterns can vary from wearer
to wearer and band to band, necessitating observation of individual baseline environmental factors.
Exacerbating these issues, commercial RFID interrogation equipment may quantize the physical

backscatter properties returned to the user for processing, aggregating these small perturbations
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together due to rounding.

Despite these challenges, we focus in this effort on wearer state classification, monitoring, and
prediction using a single RFID interrogator, a single knitted antenna and RFID tag wearable smart
garment device, and a single RFID interrogator antenna. This minimalistic design was chosen
to enable a platform framework that could scale to multiple application domains, such as mobile
monitoring using an interrogator coupled to a mobile device, using features that are available from
commercially available equipment. Single tag classification produces results that can be used as a
baseline for multi-sensor fusion research involving wearable reference tags, i.e., those worn on the

body but away from abdominal movements during respiratory monitoring.

1.2 Thesis Contributions

The main contributions of this thesis are summarized in Figure 1.4, and include a software framework
to securely interface with heterogeneous physical IoT devices (Section 1.2.1), predictive monitoring
“sensors” which provide real-time estimation of subject state from wearable IoT smart garment
devices (Section 1.2.2), and a framework for evaluating the performance of sensor fusion of these
classification and estimation “sensor” algorithms using Expectation Maximization and Gaussian

Mixture Models (Section 1.2.3).

Real-Time Sensor Fusion of Algorithmic Sensors

Predictive Real-Time State Adverse Condition

Classification Estimation Alerting

Secure Software Framework for Unobtrusive Monitoring of loT
Devices

Figure 1.4: Summary and structure of thesis contributions
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1.2.1 Secure Software Framework for Unobtrusive Monitoring of IoT De-
vices

Accurate estimation of subject biomedical state from wearable strain-gauge smart garment devices
requires a novel sensor fusion approach due to the dynamic noise environment that is present both
on and around the wearer. In order to carry out this sensor fusion, it is necessary to collect the
data in an efficient and secure manner. Many of the physical sensors used in this study utilize
UHF RFID!!, whose communication is covered by standard protocols such as the Low Level Reader
Protocol (LLRP)?2. However, because interrogation is typically done for instantaneous inventory
management, the physical properties of RFID interrogation such as signal strength and phase angle
are not typically stored for further processing or long-term use. Further, these physical properties
could be considered medical data as they are structured in such a way as to predict biomedical state.
Finally, though most of the physical sensors use RFID technology, others are traditional medical
devices such as a tocodynamometer, whose data must be collected and time-synchronized to RFID
data collected in parallel for comparison study purposes. To enable the efficient collection and secure
storage of data from heterogeneous physical sensors, we created a software framework compatible
with many physical devices and backend database systems, with a consistent communications and
encryption layer for interoperability 1%18. This software framework has been used in several RFID-
based application domains for physical layer data collection and physiological classification, including
this effort, movement detection for DVT monitoring, and an RFID-based energy harvesting heart

monitor 23

. The heart monitoring application detects changes in the read rate of the interrogator
itself as manipulated by the wearable device, so particular consideration to hard-real time constraints

is implemented within the software collection framework, as described in Section 4.3.

1.2.2 Predictive Classification and Estimation of Subject State using Wear-
able Smart Garment Devices

Our IoT monitoring software framework enables classification of biomedical state across several
applications. This study focuses on respiratory and uterine monitoring, but has also supported novel

work in RFID-based heart monitoring?? as well as correlated heart and respiratory monitoring 4.
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Because we are monitoring for anomalies that may lead to adverse medical conditions for the user,
it is not feasible to train traditional classifiers with representative data reflecting all possible user
states. For example, we cannot train a classifier with an example heart stoppage or apnea condition,
and we cannot expect to be able to train on a uterine contraction since this is the condition that the
algorithm seeks to identify as it happens. As a result, classification algorithms must train with a
minimal period of time to facilitate immediate deployment, and must only train with “positive” data
such as a normal heart beat or respiration. We have developed classifiers to accurately discriminate
between biomedical classes such as respiration and apnea in a semi-unsupervised approach %17 have
estimated biomedical state such as respiratory rate from these classification approaches'?, and have
identified anomaly conditions deviating from the short training period that may require attention

and/or retraining.

1.2.3 Software Framework for Real-Time Sensor Fusion of Algorithmic
“Sensors” Measured from Wearable IoT Smart Garment Devices

Dynamic environmental conditions, such as people and objects moving in the space, can cause RF
interference from interrogation to interrogation that is in the same band as the signal itself. Addi-
tionally, subject “ambient” movements, such as walking or torso movements unrelated to respiratory
activity, that are unrelated to the movements being monitored also appear in the same band as the
signal, and create mechanical noise artifacts. A moving interrogator, such as a mobile cell-phone
based interrogator, introduces similar noise artifacts as it moves through space with the RFID tag
itself. These are mitigated by data fusion at the physical layer and at the application layer. For
example, identification and synergy of patterns at the physical layer help inform the artifacts be-
ing sought in monitoring: if the phase and signal strength interoperate somewhat uniquely during
certain activities, this can be leveraged in detection. Additionally, if certain algorithms are more
robust than others under different environmental conditions, this can be leveraged if it is possible
to discriminate between them. We have fused physical RFID properties at the physical layer and
discriminated against analytical approaches in real-time with significant improvements in detection

accuracy 25 .
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This section summarizes publications and awards related to and supported by this effort.

Accepted Publications

1. Sayandeep Acharya, William M. Mongan, Ilhaan Rasheed, Yuqiao Liu, Endla Anday,
Genevieve Dion, Adam Fontecchio, Timothy Kurzweg, and Kapil R. Dandekar. Ensem-
ble Learning Approach via Kalman Filtering for a Passive Wearable Respiratory

Monitor. IEEE Transactions of Biomedical and Health Informatics, July 2018.

2. William M. Mongan, Robert Ross, IThaan Rasheed, Yuqiao Liu, Khyati Ved, Endla Anday,
Kapil Dandekar, Genevieve Dion, Timothy Kurzweg, and Adam Fontecchio. Data Fusion
of Single-Tag RFID Measurements for Respiratory Rate Monitoring. IEEFE Signal

Processing in Medicine and Biology (SPMB) 2017, December, 2017.

3. Shrenik A. Vora, William M. Mongan, Endla K. Anday, Kapil R. Dandekar, Genevieve Dion,
Adam K. Fontecchio, and Timothy P. Kurzweg. On Implementing an Unconventional
Infant Vital Signs Monitor with Passive RFID Tags. IEEE International Conference

on RFID, 2017, May, 2017.

4. William Mongan, Ilhaan Rasheed, Khyati Ved, Shrenik Vora, Kapil Dandekar, Genevieve
Dion, Timothy Kurzweg, and Adam Fontecchio. On the Use of Radio Frequency Identi-
fication for Continuous Biomedical Monitoring. ACM/IEEE International Conference

on Internet-of-Things Design and Implementation (IoTDI) 2017, April, 2017.

5. William M. Mongan, Ilhaan Rasheed, Khyati Ved, Ariana Levitt, Endla Anday, Kapil
Dandekar, Genevieve Dion, Timothy Kurzweg, and Adam Fontecchio. Real-Time Detection
of Apnea via Signal Processing of Time-Series Properties of RFID-Based Smart

Garments. [EEE Signal Processing in Medicine and Biology (SPMB) 2016, December, 2016.

6. William Mongan, Endla Anday, Genevieve Dion, Adam Fontecchio, Tim Kurzweg, Yuqiao

Liu, Owen Montgomery, IlThaan Rasheed, Cem Sahin, Shrenik Vora, and Kapil Dandekar. A
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Multi-Disciplinary Framework for Continuous Biomedical Monitoring Using Low-
Power Passive RFID-based Wireless Wearable Sensors. Proceedings of the IEEE

Smart Systems Workshop 2016, May, 2016.

7. Shrenik Vora, William Mongan, Kapil Dandekar, Adam Fontecchio, and Tim Kurzweg.
Wireless Heart and Respiration Monitoring for Infants through Passive RFID

Tags. International Conference on Biomedical and Health Informatics (BHI), February, 2016.

8. Damiano Patron, William Mongan, Timothy Kurzweg, Adam Fontecchio, Genevieve Dion,
Endla Anday, and Kapil R. Dandekar. On the Use of Knitted Antennas and Inductively
Coupled RFID Tags for Wearable Applications. IEEE Transactions on Biomedical

Circuits and Systems, January 2016.

9. William Mongan, Kapil R. Dandekar, Genevieve Dion, Timothy Kurzweg, and Adam Fontec-
chio. Statistical Analytics of Wearable Passive RFID-based Biomedical Textile
Monitors for Real-Time State Classification. IEEE Signal Processing in Medicine and

Biology (SPMB) Symposium Poster. Philadelphia, PA. December, 2015.

Publications In-Preparation

1. William M. Mongan, Ilhaan Rasheed, Robert Ross, Kapil R. Dandekar, Genevieve Dion,
Timothy Kurzweg, and Adam K. Fontecchio. Real-Time Detection of Motion-Based

Events Using RFID Tags in Wireless Wearable Garment Devices.

2. Robert Ross, William M. Mongan, Patrick O’Neill, [lhaan Rasheed, Adam Fontecchio, and
Kapil R. Dandekar. An Adaptively Parameterized Algorithm Estimating Respira-

tory Rate from a Passive RFID Smart Garment.

3. Patrick O’Neill, William M. Mongan, Robert Ross, Ilhaan Rasheed, Kapil R. Dandekar,
and Adam K. Fontecchio. An Adaptive Search Algorithm for Detecting Respiratory

Artifacts Using a Wireless Passive Wearable Device.

4. Austin Gentry, Brent Lee, William M. Mongan, Owen Montgomery, and Kapil Dandekar.
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Activity Segmentation Using Wearable Sensors for Deep Vein Thrombosis Condi-

tion Detection.

5. Khyati Ved, Ilhaan Rasheed, William Mongan, Genevieve Dion, Timothy Kurzweg, Adam
Fontecchio, and Kapil R. Dandekar. Ambient Motion Detection Using RFID-Based

Smart Garments.

Grants and Funding Support Awarded

1. Adam K. Fontecchio and William M. Mongan, co-Principal Investigators. Analytics on
Real-Time Biometrics from Passive Wearable Smart-Garments; 2017-2018, Commonwealth

Universal Research Enhancement (CURE) Formula Grant (SAP117558-014), $75,000.

2. William M. Mongan and Adam K. Fontecchio. Drexel University Co-op Funding Award

supplement to support undergraduate experiential learning in research; 2017-2018, $7,250.

1.3 Thesis Organization

In this thesis, we detail our overview, background and motivation in Part I, in which relevant back-
ground about the technology utilized is detailed in Chapter 2. Related efforts are outlined in Chap-
ter 3. In Part II, we detail our technical approach, including physical layer modeling (Chapter 4),
feature extraction (Chapter 5), training, classification, and re-training (Chapter 6), state estimation
(Chapter 7), physical layer sensor fusion (Chapter 8), multi-sensor estimate fusion (Chapter 9), and
prediction of future biomedical state including interbreath interval (Chapter 10). In Part III, we
detail our laboratory experimentation and human clinical trials (Chapter 11). Finally, we summarize

results and conclude in Part IV in Chapters 12 and 13, respectively.
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Chapter 2: Background

Wearable smart devices have become ubiquitous, with powered devices capable of providing heads-
up-display information and collecting real-time biometric information from its users. Typically,
these devices require a powered component to be worn and maintained, such as a battery-powered

2128 or glasses?%Y. Pregnancy and infant monitoring

sensor 26, Bluetooth communications device
devices may be uncomfortable to the mother or baby and are subject to signal loss if the patient
changes position or becomes mobile because the device must remain tethered to the patient by a belt

31 The unobtrusive Bellyband device is knitted into the fabric

and plugged into a wall for power
using conductive thread to which an RFID chip within the fabric is inductively coupled. This chip
and antenna is interrogated by ambient sensors similar to that found in an EZ-Pass tollbooth, with-
out requiring a power source or powered sensor on the garment. However, whereas tag interrogation
is used traditionally for inventory or account management (i.e., the tollbooth scenario), our work
utilizes the RSSI returned from each RFID interrogation to determine different types of motion in
the inductively-coupled chip and knit antenna structure as it is moved by the wearer. Movement
such as a uterine contraction or an infant rolling in a crib is detected wirelessly via differences in
power level perceived from the RSSI from the interrogation signal sent to the garment, as well as
variable inductive coupling between the antenna and MAGICSTRAP RFID LMXS31ACNA-011
chip?? or Monza X Dura chip®?. The chip is interrogated by standard RFID equipment available
commercially off-the-shelf, including the Impinj R420 interrogator®* and RFMAX S9028PCLJ an-
tenna?3®. Stretching the garment due to motion causes deformations to the knitted antenna, yielding
these changes in RSSI without requiring a cumbersome transducer like the current gold standard
tocodynamometer for uterine and fetal monitoring.

RFID sensors embedded within biomedical smart textiles can enable real-time, unobtrusive,

passive patient monitoring in a number of settings, such as passive monitoring of uterine contractions

in a pregnant woman, or respiration for apnea detection in an infant. The goal of this work is to
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provide a passive, wireless solution for collecting medical feedback from these heterogeneous sensors,
utilizing backscatter readings from RFID tags integrated with knitted antennas and positioned on
wearable fabrics to determine distention and, from this, metrics on the rate or intensity of breathing,
contractions, or other biomedical information. Several elements of this effort, including real-time
capture, post-processing, and big data analytics of RFID data, rely on a software module to capture
and store this data in real time from various hardware devices. However, this software module is
dependent upon the type of chip being sensed and the type of interrogator being used. Moreover,
it is necessary to compare this data to that collected by legacy medical equipment in a clinical
trial setting in order to measure performance of and determine viability of the system. All of this
necessitates a software framework for collecting data in real-time from heterogeneous medical devices
and RFID sensors simultaneously, providing a consistent data representation for each.

The workflow for RFID interrogation is summarized in Figure 2.1, and the system architecture

to implement this workflow is described in Figure 2.2.

Interrogate RFID tag

Parse Result Returned to Obtain Timestamp, EPC96 Tag, and RSSI Value

|

Store Result, Grouped by EPC96 Tag and Sorted by Timestamp

Plot on Real-Time Animated Graph
Post-Process and Plot Overall Data

Figure 2.1: RFID Capture Workflow

RFID Chip on Garment Device Data Collector

[ [

RFID Interrogator Data Filtering Modules Data Presentation Modules

Figure 2.2: General system architecture for RFID interrogation
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The result of this workflow is three-fold:

e A real-time animated plot of data collected in a fashion similar to a traditional Tocodynamome-

ter

e A post-processed plot of data collected

e Analytics and interpolation of data collected

Each component of this workflow presents challenges. The RFID interrogator data must be
obtained from specifications or reverse-engineered to determine its format and protocol. Different
interrogators may communicate with different levels of compliance to the standard LLRP protocol, or
they may use their own proprietary formats. Critical to these efforts is real-time software-based signal
processing algorithms capable of filtering the live data to detect events such as a uterine contraction,
heartbeat, or infant movement. We addressed several challenges in the workflow required to collect
and present this data from the RFID interrogator in a manner consistent with “gold standard”
readouts. For example, it was necessary to monitor the RFID interrogator using network packet
analyzers to determine the protocol used??, and construct an algorithm compatible with the device,
modifying and adapting a library implementation of that protocol® for our use. Similar work was
required to interface with the tocodynamometer using a legacy interface used to communicate with
traditional hospital monitor devices. Additional software was written to communicate with portable
RFID interrogators over a Bluetooth connection. This activity is significant because it will enable
the presentation of multiple real-time sensor data collected from heterogeneous sensors over various
interfaces, including a live web service interface, or Hadoop distributed data cluster. This enables
data fusion and signal processing in order to determine if medical events are taking place or are
about to take place, or to present a visualization of the movements sensed. Additionally, this data
must be animated in a real-time display for medical use, which means that real-time processing
must be limited or done efficiently to allow sufficient time for rendering. Further, the data could
be collected from several RFID tags, enabling a contour map of the body depending on the tags’

placement on the wearable fabric.
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Each solution provided here presents further opportunities for investigation. The EPC tags, when
interrogated, yield a radiated signal that is interpreted to derive medical feedback. This backscatter
may constitute personal medical information protected under HIPAA guidelines. Further, the RFID
interrogator will likely itself be a wireless and portable solution, enabling full mobility of the mother
or baby; however, these signals must be processed to remove these movements, as they will distort
the observed RSSI value. In addition, the module that communicates with the RFID interrogator
will need to be migrated to a wireless network, Bluetooth, or other wireless protocol, requiring a
modular software design that can communicate securely. Each consideration is addressed in this
work.

This multifaceted work includes efforts to design an RFID-enabled antenna that interacts with
smart garments made of heterogeneous materials using inductive coupling. Initial benchmark testing
of these garments and antenna designs utilized the LLRP Commander software3” that enables con-
figuration of RFID interrogators for data collection. This data is then exported for post-processing.
For more rapid bench testing, we sought a solution that enabled automatic configuration of the
RFID interrogator, real-time visualization and processing of the data, and the ability to collect
data from multiple interrogators or other devices simultaneously in a manner compatible with the
visualization and processing module. This research has enabled signal capture at a range of several
feet, and is conducive to mounting interrogation equipment on a ceiling or wall. This, in turn, has
enabled research and development in wireless, passive uterine monitoring, fetal heart monitoring,
and infant apnea detection, via an RFID-based framework for remote wireless monitoring. This
software solution to support simultaneous, real-time collection and processing of RFID-based sensor
data is the focus and contribution of this work.

With this software, we were able to design an experimental protocol. Our RFID-based sensors
enable several medical device applications, such as uterine monitoring and infant respiration. To
simulate these environments for clinical trials, we use the Laerdal SimBaby 32 as a simulator for apnea
detection and a pregnant mannequin as a simulator for uterine monitoring, each containing an air

bladder, and each wearing a tocodynamometer and an RFID bellyband. The baby is programmed

CHAPTER 2: BACKGROUND
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to execute several respiratory scenarios for detection purposes: for example, breathing at a constant
rate for 3 minutes and then stopping. The bellyband and tocodynamometer are each monitored
using a thread spawned by the software, and they are plotted together with optional data filtering
techniques. The mannequin is actuated using a peristaltic pump that fills the bladder with either
water or air to a predefined and programmable pressure or duration. These tests enable two-
fold analysis: first, statistical analysis of the data enables detection of “events” (i.e., respiration
or a uterine contraction) that we can compare quantitatively to existing medical devices; second,
comparisons between RFID chips, antenna designs, and fabric designs, by calculating the range and

angle at which reliable measurements can be taken from the SimBaby or mannequin.

2.1 Repurposing RFID at the Physical Layer

Even in idealized environments with little mechanical interference and wideband interrogation, RFID
backscatter follows the direct path between tag and interrogator relatively rarely3?, instead following
multipath propagation about the environment. The singulation protocol for Class 1, Generation 2
(C1G2) UHF RFID*° provides for a state machine implementation on each RFID tag and a random
number generator that serves as a Slotted ALOHA protocol for collision avoidance. Tags alternate
their backscatter responses to allow many or all tags in the field to respond before any one tag
responds a second time. Tags “choose” amongst themselves in each round by counting down from
a random number prior to responding, repeating when a collision occurs. In this way, a single
tag is eventually selected for response. As a result, multipath propagation is of little consequence
for inventory management because the EPC tag is eventually read from a single tag regardless of
the physical path traveled by the signal itself. The physical properties of successive interrogations,
however, are likely to be different. The interrogation frequency and signal paths between interrogator
and tag both vary over time: the frequency usually (but not necessarily) follows a deterministic
rotating pattern in order to satisfy regulatory requirements in the United States*!, and the signal
path can be random and unpredictable as the physical environment surrounding the RFID tag and
interrogator may also change over time. Neither a fully stochastic nor a fully deterministic model

39

is sufficient for accurate RFID-based state estimation®”. Therefore, we developed a hybrid model

CHAPTER 2: BACKGROUND 2.1 REPURPOSING RFID AT THE PHYSICAL LAYER
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that uses statistical multisensor fusion to inspect both deterministic models as well as probabilistic
models of the physical properties of RFID backscatter response, described in Part II. Multipath
effects will affect all RFID interrogations in the 900MHz band, as the signal waves are coherent for
approximately 600 meters per Equation 2.1 (where c is the speed of light in a a vacuum, assumed to
be 3 x 10® meters/second, B is the signal bandwidth, assumed to be 500 kHz, and n is the refractive
index, assumed to be ~ 1.00 for air at standard temperature and pressure). With these parameters,

the coherence distance L = 599.83 meters.

L=-"5 (2.1)

The Impinj Speedway R420 communicates data received over each of its four antennae via a
wired ethernet connection. The Wireshark packet capture (pcap) utility confirmed that the data
being sent by the Impinj unit is based on the LLRP standard?2. The LLRP standard is extensive,
but of particular interest are the trace diagrams indicating opening an RFID session with the Impinj
unit (Figure 2.3), reading a tag report from the Impinj unit (Figure 2.4), and closing an RFID
session with the Impinj unit (Figure 2.5). The data flow from the Impinj is shown in Figure 2.6,
with each message type described in detail (including how to parse the data) as provided by the
LLRP protocol specifications.

According to the LLRP Specification??, each LLRP message has a common format, shown in

Figure 2.7:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved Version Number Message Type

Message Length

Message Length
Message 1D

Message - - -

Figure 2.7: Bit-level description of an LLRP protocol message

Based on this LLRP message format, messages can be formulated, sent, read, and parsed based on
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Destination Protocol Length Info
10.0. LLRP 98 LLRP Message (Reader Event Notification)

Time Source
54.802831  169.254.79.5
7 4.808589 0.0.1

sage (Gt a2 5)
9 4.846135 254.79.5 10.0.0.1 LLRP 112 LLRP Message (GeT Reader CapabiliTies Response)
10 4.852761 0.0.1 169.254.79.5 LLRP 80 LLRP Message (Delete ROSpec)

12 4. 868040 5 10.0.0.1 LLRP 94 LLRP Message (Delete ROSpec Response)
13 4.872631 169.254.79.5 LLRP 128 LLRP Message (Add ROspec)

14 4.876131 5 10.0.0.1 LLre 84 LLRP Message (Add ROspec Response)
154.879182  10.0.0.1 169.254.79.5 LLRP 80 LLRP Message (enable ROSpec)

16 4.881174 5 10.0.0. LLRP 84 LLRP Message (Enable ROSpec Response)
17 4. 883169 169.254.79.5 LLRP 80 LLRP Message (Start ROSpec)

18 4.893435 16! .5 10.0.0.1 LLRp 84 LLRP Message (STart ROSpec Response)

19 4.916540 .5 10.0.0.1 LLre 99 LLRP Message (Reader Event Notification)
21 4.920804 .5 10.0.0.1 LLRP 99 LLRP Message (Reader Event Notification)
22 4.923042 .5 10.0.0.1 LLre 99 LLRP Message (Reader Event Notification)
24 7.400416 5 10.0.0.1 LLRP 230 LLRP Message (RO Access Report)

26 7.900714 .5 10.0.0.1 LLRp 681 LLRP Message (RO Access Report)

28 8.400490 .5 10.0.0.1 LLre 722 LLRP Message (RO Access Report)

30 8.903294 160.254.79.5 10.0.0.1 LLRP 640 LLRP Message (RO Access Report)

32 0.400508 169.254.79.5 10.0.0.1 LLre 722 LLRP Message (RO Access Report)

34 9.900582  169.254.79.5 10.0.0.1 LLRP 435 LLRP Message (RO Access Report)

36 12.400687 169.254.79.5 10.0.0.1 LLRp 107 LLRP Message (RO Access Report)

39 14.800831 169.254.79.5 10.0.0.1 LLRP 158 LLRP Message (Keepalive)

4115.401010 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)

43 18.903263 169.254.79.5 10.0.0.1 Lire 148 LLRP Message (RO Access Report)

45 22.901593 169.254.79.5 10.0.0.1 LLRP 107 LLRP Message (RO AcCess Report)

47 24.801806 169.254.79.5 10.0.0.1 LLRP 76 LLRP Message (Keepalive)

Frame 7: 77 bytes on wire (616 bits), 77 bytes captured (616 bits)

Ethernet II, src: AsustekC_ec:c6:89 (50:46:5d:ec:c6:89), Dst: Impinj_10:20:66 (00:16:25:10:20:66)
Internet Protocol version 4, srci 10.0.0.1 (10.0.0.1), Dst: 169.254.79.5 (169.254.79.5)

Transmission control Protocol, Src Port: 35473 (35473), Dst Port: 11rp (5084), Seq: 1, Ack: 33, Len: 11
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© Low Level Reader Protocol

0 0L.. = version: 1.0.1

. ..00 0000 0001 = Type: Get Reader Capabilities (1)
Length: 11

1: 0

ranahilitdac: 1100 ranshilirias ()

0000 00 16 25 10 20 66 50 46 5d ec c6 89 08 00 45 00
0010 00 3f dO df 40 00 40 06 66 d5 Oa 00 00 OL 20 fe
0020 4F 05 8a 91 13 dc dd ¢7 89 8 1c 6e b4 9a 80 18
0030 00 72 03 35 00 00 01 01 08 0a 00 08 53 65 00 09
0040 ae 15 04 01 00 00 00 Ob 00 00 00 00 02
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Figure 2.3: Opening an LLRP Session with the Impinj Speedway R420 interrogator, as cap-
tured by Wireshark. Notice the raw binary data to be parsed at the bottom of the figure, parsed

by Wireshark for analysis.
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.... ..00 1111 0000 = Type: Tag Report Data (240)
Length: 31
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.000 1101 = Type: EPC-96 (13)
EPC: 00e20060031b3¢2526000000
£ TV Parameter : Antenna ID
Type: Antenna I0 (1)

1
: peak RsSI

Type: peak RSSI (6)
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£ TV Parameter
.000 0010 = Type: First seen Timestamp UTC (2)

First seen Timestamp UTC

Microseconds: 953214223620083

Fitter: [ Irp Expression.. Clear Apply Save

Ne. __ Tme ____ Souce Destintion_ Protocol Length o A
4115.401010 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
43 18.903263 169.254.79.5 10.0.0.1 LLR 148 LLRP Message (RO Access Report)
45 22.901593 169.254.79.5 10.0.0.1 LLRP 107 LLRP Message (RO Access Report)
47 24.801806 169.254.79.5 10.0.0.1 Lirp 76 LLRP Message (keepalive
49 29.403134 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
51 33.403499 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
53 33.902579 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
58 34.802670 169.254.79.5 10.0.0.1 Lirp 76 LLRP Message (Keepalive)
60 39.903079 169.254.79.5 10.0.0.1 LLRP 189 LLRP Message (RO Access Report)
62 44.40360L 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
64 44.803964 169.254.79.5 10.0.0.1 Lirp 76 LLRP Message (Keepalive)
66 46.903657 169.254.79.5 10.0.0.1 LLRP 107 LLRP Message (RO Access Report)
68 50.404316 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
70 50.904852 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
72 54.805305 169.254.79.5 10.0.0.1 LLRp 199 LLRP Message (keepalive)
74 60.905019 169.254.79.5 10.0.0.1 LLRP 107 LLRP Message (RO Access Report)
76 61.405213 169.254.79.5 10.0.0.1 LLR 189 LLRP Message (RO Access Report)
78 64.805445 169.254.79.5 L0.0.1 Lire 76 LLRP Message (Keepalive)
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Figure 2.4: Capturing a set of Reader Operation (RO) RFID tag messages from the Impinj

Speedway R420 interrogator
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a lirp2.pcap  [Wireshark 1.10.6 (v1.10.6 from master-1.10)] = B
File Edit View Go Capture Analyze Statistics Telephony Tools Intemals Help

codmd BRXR Acs9TLEE QD §EB% B

Fiter: | liep | Expression.. Clear Apply Save
No. Time Source Destination Protocol Length_Info ~
41 15.401010 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
43 18.903263 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
45 22.901593 169.254.79.5 10.0.0.1 LLRP 107 LLRP Message (RO Access Report)
47 24.801806 169.254.79.5 10.0.0.1 Lire 76 LLRP message (keepalive)
49 29.403134 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
51 33.403499 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
53 33.902579 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
58 34.802670 169.254.79.5 10.0.0.1 LLRP 76 LLRP Message (keepalive)
60 39.903079 169.254.79.5 10.0.0.1 Lire 189 LLRP Message (RO Access Report)
62 44.403601 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
64 44.803964 169.254.79.5 10.0.0.1 LLRP 76 LLRP Message (Keepalive)
66 46.903657 169.254.79.5 10.0.0.1 LLRP 107 LLRP Message (RO Access Report)
68 50.404316 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
70 50.904852 169.254.79.5 10.0.0.1 LLRP 148 LLRP Message (RO Access Report)
72 54.805305 169.254.79.5 10.0.0.1 LLRP 199 LLRP Message (Keepalive)
74 60.905019 169.254.79.5 10.0.0.1 LLRP 107 LLRP Message (RO Access Report)
76 61.405213 169.254.79.5 10.0.0.1 LLRP 189 LLRP Message (RO Access Report)
78 64.805445 169.254.79.5 10.0.0-1 LLRP 76 LLRP Message (Keepalive)
.25 80 LLRP Message (Stop ROSpec)
81 64.068800 169.254.79.5 10.0.0.1 LLRP 94 LLRP Message (Stop ROSpec Response)
83 64.977310 10.0.0.1 169.254.79.5 LLRP 80 LLRP Message (Disable Rospec)
84 64.978133 169.254.79.5 10.0.0.1 LLRP 84 LLRP Message (Disable ROSpec Response)
85 64.983043 10.0.0.1 169.254.79.5 LLRP 80 LLRP Message (Delete ROSpec)
86 64.984198 169.254.79.5 10.0.0.1 LLRP 84 LLRP Message (Delete ROSpec Response)
87 64.986020 10.0.0.1 169.254.79.5 LLRP 76 LLRP Message (Close Connection)
85 64.988085 169.254.79.5 10.0.0.1 Lre 84 LLRP message (Close Comnection Response)

Frame 80: 80 bytes on wire (640 bits), 80 bytes captured (640 bits)

Ethernet II, src: AsustekC_ec:c6:89 (50:46:5d:ec:c6:89), DSt: Impinj_10:20:66 (00:16:25:10:20:66)

Internet Protocol Version 4, Src: 10.0.0.1 (10.0.0.1), Dst: 169.254.79.5 (169.254.79.5)

@ Transmission ceontrol Protocol, Src Port: 35473 (35473), Dst port: 11rp (5084), Seq: 116, Ack: 4625, Len: 14

© Low Level Reader Protocol

...0 0L.. = version: 1.0.1 (1.

... ..00 000L 0111 = Type: Stop ROSpec (23)

Length: 14

;0

bnenar The 1
0000 00 16 25 10 20 66 50 46 5d ec c6 89 08 00 45 00
0010 00 42 dl 00 40 00 40 06 66 bl Oa 00 00 0L a9 fe
0020 4f 05 8a 91 13 dc dd 7 89 f7 1c Ge c6 8a 80 18
0030 00 b8 03 39 00 00 01 O1 08 0a 00 08 94 22 00 09
0040 c5 85 04 17 00 00 00 Oe 00 00 00 00 00 00 00 01
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Figure 2.5: Closing an LLRP Session with the Impinj Speedway R420 interrogator

this general format, for an LLRP-compliant device. For example, the GET-READER_CAPABILITIES
message has a message type of 1, and the GET_READER_CAPABILITIES_RESPONSE message
type is 11. The parameters for each message type (i.e., the message value) are documented in
the protocol specification, and the most relevant of these messages will be illustrated here: the
RO_ACCESS_REPORT message. This message contains the EPC96, timestamp, and RSSI value of
the tags. Because TCP (the transport protocol over which LLRP is run) buffers data, these messages
are queued for efficiency and sent in clusters. The timestamp that the message is received cannot
be used to infer the time that the RFID tag was read; instead, the timestamp for each message is
embedded for each RFID tag read being sent, and should be used instead to ensure accurate timing
and spacing calculations during post-processing.

In the RO_LACCESS_REPORT message (message type 61), the number of tags being sent in each
cluster is inferred from the message length header. Each tag report data point in the message value
section consists of the fields for parsing in a loop (until the total message length has been reached)

as shown in Figure 2.8:
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Figure 2.6: Data Flow Inferred for the Impinj Speedway R420 interrogator
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Sub-message type (The Tag Report Data sub-message type is 240)

Length of this sub-message (this is a portion of the overall message length)

EPC96 Parameter (a 96-bit code indicating the EPC tag of the RFID chip being read)

Antenna ID (the antenna that read the tag, in case there is more than one antenna active)

Peak RSSI

First Seen Timestamp (An absolute timestamp given in nanoseconds that the tag was read)

Figure 2.8: Bit-level description of an LLRP protocol sub-message embedded within the LLRP
message format in Figure 2.7

Each of these parameters can arrive in any order within the message; for parsing, each parameter
is given an ID code. For example, the EPC96 parameter is code 13, and the Peak RSSI is code 6.
These are all defined by the protocol specification. Thus, if a message is read with a type code of
61, it is an RO_ACCESS_REPORT message, in which a series of RFID interrogations can be found.
For each interrogation, if a parameter of type 6 is read, the value that follows is the RSSI.

This data is read in real-time via a thread that allows the module to execute in the background
while data processing and analytics are performed simultaneously. Here, we discuss the thread
module that performs this protocol implementation. The LLRPyC?3% module was used as a starting
point to read and parse these messages. They are returned in real-time via a callback function, and
this function was implemented to add these tags to a data structure being simultaneously processed
by a thread for animating the plot in real-time.

However, there were several incompatibilities between the LLRPyC module and the Impinj LLRP
interrogator, perhaps because the protocol implementation is incomplete, or because the Impinj is
not fully LLRP-compliant. For example, the Impinj sometimes sends data that is extraneous to the
LLRP protocol or supplemental to that expected by the LLRPyC module. At other times, empty
messages were returned by the Impinj, which could be interpreted as an expected RESPONSE
message, placing the Impinj and the protocol client implementation fatally out-of-sync. Because the
LLRPyC protocol included numerous checks of strict compliance, these incompatibilities occurred
frequently and required adjustment to the protocol implementation module. Best practice dictates

that one’s software modules be lenient about their inputs (that is, forgiving to data received that
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is not in strict compliance with a protocol specification, if possible), but strict with their outputs
(that is, only to output data in strict compliance with its promised interface and specifications).
One naive solution to this problem would be to simply ignore the extraneous message information.
However, this is not feasible, because that data would later be mistaken as part of the next message.
Although the protocol data units described in this Section are given friendly textual names like
GET_-READER_CAPABILITIES, it is important to remember that the actual data transmitted
are the numerical encodings that represent each message type. Because of this, it is important to
determine precisely where a message begins and ends. Otherwise, transmitting the length of the
message would not be helpful, because the protocol client would not be able to determine where in the
message to parse that length, as a result of not being able to determine where the message began. The
LLRPyC module did not parse the individual parameters provided by the RO_-ACCESS_REPORT,
so this needed to be implemented in accordance with the protocol specifications described in this
Section. These “extra,” un-parsed parameters are likely the reason for the protocol client failing on
the incoming messages. The protocol client was modified to read this data, parse those parameters
necessary for this study, and store the rest without further processing. Once this was completed,
the LLRP protocol client module could be used to collect data in real-time for processing. The
following sections describe in detail how this module was used to perform real-time processing, post-
processing, and analytics on the RFID data collected. We define real-time processing as the ability
to collect and store data at a higher rate than the interrogation read rate, and the ability to process

the data within a specified time constraint (i.e., respiratory rate detection over a 6 second window).

2.1.1 Integrating Analysis Modules with the Data Collection Framework

We construct an algorithm compatible with the device communicating over the LLRP protocol,
modifying and adapting a library implementation of that protocol® for our use. Similar work was
required to interface with the tocodynamometer using a legacy interface used to communicate with
traditional hospital monitor devices. Additional software was written to communicate with portable
RFID interrogators over a Bluetooth connection to enable communication with wireless interrogators.

The data are time-correlated so that events can be compared between devices. Further, the data
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could be collected from several RFID tags, enabling a contour map of the body depending on the
tags’ placement on the wearable fabric.

This data is read in real-time via a thread that allows the module to execute in the background
while data processing and analytics are performed simultaneously. The LLRPyC?3® module was
used as a starting point to read and parse these messages. They are returned in real-time via a
callback function, and this function was implemented to add these tags to a data structure being
simultaneously processed by a thread for animating the plot in real-time.

There were several incompatibilities between the LLRPyC module and the Impinj interrogator,
perhaps because the protocol implementation is incomplete, or because the Impinj is not fully LLRP-
compliant. For example, the Impinj sometimes sends data that is extraneous to the LLRP protocol
or supplemental to that expected by the LLRPyC module.

To facilitate interrogation of multiple tags simultaneously (for example, to create a contour of
body movements), the software was modified to also parse and store the EPC96 tag from each read
event message. The dictionary was grouped by EPC96 tag and sorted by timestamp before plotting
on the animation and graph. This resulted in multiple sets of coordinates to be plotted separately.
The animation thread plots each set of coordinates separately, and new tag events are associated with
their existing set of coordinates. If a new RFID chip is introduced during the animation sequence,
it is dynamically added to the list of known RFID tags, and a new set of coordinates are plotted
alongside the existing ones in real-time. For readability, each set of RFID EPC tag data is plotted
in a different color, and a legend is provided on the graph to indicate which line corresponded to
which EPC tag ID. We are able to detect, read and process four RFID chips simultaneously (more
is likely feasible at the expense of the interrogation sample rate, but our investigation has focused

on single-tag deployments).
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Chapter 3: Related Work

In this chapter, we summarize the state of the art in four synergistic and related areas to this effort.
We outline existing work in smart wearable biomedical monitoring devices in Section 3.1. RFID-
based tracking and monitoring systems are surveyed in Section 3.2. Data collection and processing
systems for wearable sensor monitors are described in Section 3.3, and, finally, we survey Machine
Learning approaches in RF wearable systems in Section 3.4. These efforts provide a framework for
synergistic intelligent systems in heterogeneous IoT wearable biomedical systems; we build upon
these efforts by providing for unsupervised models for real-time learning and classification of wearer

state using knitted antennas for RFID-based applications.

3.1 Survey of Wireless Wearable Monitoring Devices

Conductive materials have a variety of uses as wearable textile devices, including data channels
and sensors, wearable antennas, as well as in protective clothing materials*?. Flexible antenna
designs enable embedding wearable sensors about the human body; Xu, et al, do this by embedding
the flexible antenna upon a felt strap suitable for integration into a wearable garment*3. Even
passive sensor smart garments may require a portable processing unit or power source, but have
the potential to sense the environment and user state as well as inform active sensors that can
actuate directly on the human body*?. An integrated patch antenna is subject to strain forces
that influence its S;; characteristics®®; the wearable sensor in this study is a knitted antenna using
conductive thread deployed about a passive RFID tag embedded into the garment in an unobtrusive
manner that requires no external power source aside from the interrogation signal itself!1i46. This
knitted antenna takes advantage of the changes in resonant frequency due to strain forces to create
a smart garment device that can monitor stretching as well as coarse movement activity.

Other wireless sensors are attached to the user during typical use, but not necessarily integrated

into an unobtrusive day-to-day garment for use without awareness of its deployment. A tracheal
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sensor attached with medical tape can be used to detect snoring spells that could lead to apnea

47 using acoustic analysis with 89% accuracy.

conditions

It has been shown that wireless antennas embedded into garments can be used to monitor chest
distension due to respiratory activity using a prototype antenna connected to a network analyzer
for monitoring the frequency shift of the antenna due to changes in dielectric properties of the body

during respiration®®

. These frequency shifts can range from 4-15 MHz to 120 MHz depending on
the depth of inspiration. Our sensor must iterate over frequencies in the 900 MHz band in order to
utilize commercially available monitoring equipment, so we use signal strength and other physical
RF properties; as a result, we must filter noise artifacts due to the antenna proximity to the human
body. Wireless reflections using 802.11 Wi-Fi protocols can also be utilized for subject monitoring
using the WiBreathe system, if a transmitter and receiver pair are available in the environment and
a single subject is being monitored*°, and for up to 7 subjects in the same room with a high degree of
accuracy using the MUSIC algorithm on a set of subcarrier gains observed on the Wi-Fi channel®°,
and for multiple subjects as long as they remain 1.5 meters apart®'. However, like WiBreathe, we
will also employ both discrete and spectral analysis for respiratory rate estimation, and fuse those
signals into a unified estimate.

Tarassenko and Mason 52:%3

use active tags such as ECG and photoplethysmography (PPG) to
infer respiratory activity using autoregressive (AR) modeling. Our effort seeks to use a single passive

RFID sensor to monitor strain movements such as respiration; the wireless signal is too noisy to use

AR modeling directly, and so a stochastic model is employed instead for this purpose.

3.2 Survey of RFID-Based Subject Monitoring

Common physical features reported from commercial off-the-shelf RFID equipment include RSSI,
phase angle, Doppler shift, and received timestamp. Although these features are sometimes quan-
tized, and are subject to perturbations due to multipath fading and shadowing as the reflected
signal traverses an irregular and dynamic environment, they can be monitored over time to estimate
subject state. Often, this is done by fusing features collected from multiple interrogators or from

multiple tags placed in the environment. Doppler and RSSI have been used to identify gross hu-
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man movements such as walking around a room with an RFID tag®*, and are used to detect those
movements in a device-free environment in which the tags are deployed in the environment, and

e . - .
54i55  To overcome the interrogator noise inherent in the Doppler measurement, a

not on the person
fixed RFID interrogation frequency was used®*; however, this approach is not feasible in the United
States under Federal Communications Commission (FCC) regulations?!. Although these limitations
do not exist elsewhere in the world, and can be overcome with custom interrogation equipment and

56759 or other physical layer infrastructure such as Zigbee®® or microcontroller/Software

protocols
Defined Radio (SDR)%%62, we restricted ourselves in this effort to minimal commercially available
equipment. Shadowing due to human movements between the tag and interrogator were detected
by observing changes in the read rate®®. Observing changes in tag read rate across multiple tags is a
feasible feature in a device-free application in which the tags are deployed to the environment itself
because their configuration is likely to be static; in our on-human single-tag application, the read-
rate is not likely to be constant due to dynamic multipath fading artifacts as well as the presence of
additional tags entering and leaving the field. Further, we have chosen a non-device-free deployment
of a tag about the human body to facilitate rapid deployment in any environment, rather than re-
stricting ourselves to a fixed room or building; additionally, we seek to analyze the fine strain gauge
movements of the knitted antenna itself rather than (or in addition to) the coarse movements of the
wearer.

IDSense% is a user activity tracker that classifies behaviors (interactions with objects in the
environment) using RFID signal strength, phase, and read rate. Activities were trained on features
of RSSI, Doppler, and Phase, and then classified into five activities using a Support Vector Machine.
This effort requires tagging all the objects in question, and a supervised training period, but were
able to classify between 68% and 98% accuracy. A similar system uses an array of passive RFID tags
and the root mean square (RMS) of phase differences among them to classify handwriting gestures
in the air%. The system is trained on feature thresholds to classify a particular handwriting gesture.
Related systems for customer shopping behavior analysis use phase difference to determine if a tagged

item was moved from a shelf to a shopping cart%, and use RSSI and Doppler window probability
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distribution changes to track tagged items and customer interactions®. Phase and Doppler-based
tag velocity is a useful feature for knitted antenna strain sensing, even though coarse movements are
intermixed with this signal. Bhattacharyya, et al, use a similar RFID physical model to create an
RFID strain sensor using a controllable frequency sweep%6. Multipath artifacts present as the strain
sensor is stretched of 1.5 dBm to up to 3 dBM%%, but these backscatter artifacts are left as future
work. We do not enjoy frequency-controlled interrogation; however, we do use a stochastic model
to mitigate multipath artifacts. Volk, et al, use High Frequency (HF) RFID to monitor vital signs
in rodents using an implanted RFID tagb”. In our work, we utilize an external tag knitted via an
unobtrusive knitted antenna, and we chose UHF RFID for its added read range and read rate over
HF 68,

When multiple interrogators and/or tags are deployed in the environment, coarse-grained motion
artifact tracking is facilitated®%% using kernel-based methods such as a Support Vector Machine
(SVM) %9711 or multi-layer perceptrons such as Artificial Neural Networks (ANN)7%74, This is
often accomplished by deploying reference interrogators or tags in the environment at known lo-
cations ™ and using differential RSSI measurements 7, differential Doppler shift analysis®, dif-
ferential phase/Angle of Arrival (AoA) analysis® 83, Specifically, NightCare ™ uses tags placed in
the environment near the user to infer movement or presence in the room for sleep patterns, sleep
apnea, and bedsores, but not real-time respiratory measurements such as respiratory rate. Fixed
environmental configurations are preferable when performing RSSI-based monitoring, because RSSI
is subject to variation due to the reflective properties of different materials that may be present in

the environment 34, ambient environmental temperature8?

, as well as the orientation of the tags®S.
If the antenna is fixed, changes in phase angle can be used to infer the distance between the tag
and antenna; again, multiple interrogators and tags are typically deployed to resolve the ambiguity
of phase angle changes beyond [—, 7)%7, which occur at distances beyond 37 ~ 16cm 88 for inter-

rogation frequency f and speed of light in a vacuum constant ¢. We do not enjoy a broad sensor

network to inspect, nor do we wish to train on a known environmental configuration such as sen-

1SVM-based localization has also been enabled by classifying RSSI from Wi-Fi signals 72.
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sor placement; additionally, we seek to limit providing supervised training samples to our learning
algorithms. Nevertheless, we employ kernel-based methods including SVM to separate data. In
an SVM, each training sample is used to additively perturb a perceptron separation function. We
explore alternative semi-supervised training to enable the separating capabilities of the SVM within

these constraints in Sections 6 and 6.6.

3.3 Survey of Machine Intelligence and Data Collection Systems for Wear-
able Sensor Monitors
Classification problems typically involve kernel-based separation® and hypothesis testing®®. Seis-
mic activity was classified using a matched filter®®, in which a reference signal is compared using
hypothesis testing to the input signal. Although we will perform maximum likelihood hypothesis
testing for classification, matched filtering was a challenge in this application because of the vari-
ability in the signal presented during human activity. For example, a brief decoupling of the knitted
antenna from the tag due to a large stretch or short from a piece of metallic thread causes the
sinusoidal stretching pattern to appear as multiple rapid peaks. A low-pass filter removes many of
these artifacts, but sacrifices signal amplitude which would aid in classification by a matched filter.
In addition to monitoring physical sensors for biomedical feedback, it is necessary to communicate
and present this information in a manner useful to patients and care providers. Telemedicine refers
to the communication of biomedical feedback and medical records between and among providers
and patients for the purpose of health maintenance. In this effort (see Section 4.2), we develop data
collection, visualization, and integration modules conducive for the remote monitoring of biomedical
feedback using wearable sensor devices as well as traditional medical monitors. Telemedicine systems
include integration of body sensor networks and real-time communications to a hospital setting°.
Home use of reserved telemedicine frequency bands is restricted by FCC regulations®® due to the
risk of RF interference from home appliances; however, we use the unlicensed 900 MHz band for
RFID-based sensors which, despite the risk of interference artifacts, are conducive for home use.
eCloudRFID?! is a data collection and presentation framework from RFID sensor networks to

interface with external application layer components. Our framework is focused on bridging the
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physical layers of heterogeneous sensors, including but not limited to RFID devices, and storing

them for processing in a HIPAA-compliant manner.

3.4 Survey of Machine Learning Approaches for RF-Based Monitoring

As we discuss in Chapter 5, it is necessary to aggregate the physical properties of RF backscat-
ter data into higher order features that can be baselined, compared, or modeled for wearer state
classification. Some features considered in the literature using RF properties include the number
of frequencies above a given power magnitude threshold, the mean and standard deviation of the
power spectrum, the minimum or maximum power observed in the spectrum, and the mean or stan-
dard deviation of the underlying signal in the time domain over a given window duration®?. The
features are aggregated into a reduced dimension feature space using PCA, and then clustered using
an unsupervised method such as k-means clustering to identify one or more states for each data
point in the window“2. Although our underlying signal suffers from noise artifacts and quantization
that yields low separability for fully unsupervised classification, and our window size must be kept
short to maintain real-time classification performance for biological applications, we will augment
classic classification algorithms (see Chapter 6) to allow for unsupervised classification of passive
RFID backscatter properties using aggregate features including these.

Many signal processing algorithms are deployed to denoise environmental artifacts present in RF
signals, which can enable a signal better characterized by the mechanical movements introduced
by the wearer and monitored for physiological state classification. For example, a reference tone
composed with a signal can be used to mitigate jitter effects, introduced by interrogator instability
in the sampling clock or analog-to-digital converter3, in the received signal by measuring the phase
noise present in the reference frequency band®*. Although such a reference signal cannot be injected
with commercial off-the-shelf RFID interrogation equipment, such a method could be integrated into
an SDR custom implementation of the RFID protocol for baseline experimentation against existing
RFID equipment.

Other RF machine application domains include classifying the expected feature ranges for an

interrogator for security purposes®?, to determine whether the system is communicating with a

CHAPTER 3: RELATED WORK 3.4 SURVEY OF LEARNING SYSTEMS IN RF



31

genuine interrogator within the sensor network. The classification algorithms are similar to our
approach, but we are classifying using a non-fixed RFID tag as well as a flexible knitted antenna
whose shape and reflective properties change as the wearer interacts with it. We are not able
to cluster features into known classes, and must therefore utilize temporally evolving features for
classification. In addition, we must dynamically and synthetically generate training data for the
classifier, since it is infeasible to induce biological anomalies for the purposes of training a monitor
intended to detect or mitigate those anomalies.

Additionally, deep learning models such as ANN and Convolutional Neural Networks (CNN) are
used to automatically classify data including RF properties. Although ANN is a powerful structure
that adaptively learns a model from sample data and is robust to environmental variations such as
those commonly seen in our application domain, one disadvantage of ANN is that the underlying
model generated by the ANN is not directly tied to physical phenomena being observed by the
data features. It is challenging to quantify the replicability of ANN performance in a physiological
domain since a different model can be generated for every deployment instance. Still, classification
using ANN and deep learning models has been used with RF data with success®®, but the ANN
may train on the noise in a low SNR environment such as our passive RFID application domain.
We utilize ANN in limited applications in which dynamic environmental training is beneficial, but
the underlying model can be related to the features in a replicable manner, such as instantaneous

ambient movement detection (see Section 6.5).
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Chapter 4: Modeling of RFID-based Biofeedback

By FCC Part 15 regulations in the United States, UHF RFID in the 900 MHz band must iterate
between each of 50 channelized frequencies between 902 and 928 MHz in increments of 500 kHz*!.
This is done to prevent collisions and unwanted interference in the band which is shared amongst
unlicensed uses. Generally, interrogators must change frequencies every 200 milliseconds. Unfortu-
nately, the physical properties of RFID backscatter response such as signal strength and phase angle
are affected by the interrogation frequency, because the knit antenna is resonant at a particular fre-
quency within the band. Stretching the antenna changes this resonant frequency, which changes the
signal backscatter properties, but changing the interrogation frequency also changes these properties.
To reduce perturbations due to signal strength and phase, the physical model equations incorporate
the interrogation frequency for the RSSI (see the Friis Transmission Formula in Equation 4.1°7) and

the phase (see Equation 4.2%%), where:

® Pry reader is the calculated power received at the interrogator given a constant environment,

Pry reader is the interrogator transmit power (configured to be 1 Watt),

® Greader is the reader gain (assumed to be constant),

Glag is the tag gain (which can change over time with the shape of the knit antenna),

A is the interrogation wavelength (%, given an interrogation frequency f),

r is the interrogation radius (which can change as the subject moves in space with the tag),

R is the return loss over the interrogation path,

v is the tag velocity,

c is the speed of light in a vacuum,
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e f., is the Doppler shift, or change in phase angle, observed in two successive tag interrogations,

and

e « is the interrogation angle (which can change over time as the tag moves in space).

A 4
PRm,reader = PTa:,reader X Gzeader X G?ag X (747_”_) X R (41)
X fm
= 4-2
v 2f x cos(a) (42)

We observe that r, Giag, R, v, and a are dependent upon wearer configuration and are unknown
to us. The rest, however, can be configured or remain constant during use. Unfortunately, changes in
individual terms are independent of changes in other terms, in that they can be triggered by different
types of wearer changes in configuration. For example, r varies with the distance to the interrogator,
but G4 varies as the knit antenna is stretched. Using multiple RFID tags including a reference tag
on a relatively stationary part of the body, these terms can be isolated; however, it is assumed for this
effort that these inter-relationships remain unknown and must be observed stochastically. Therefore,

we group these varying terms together to form corresponding measurements in Equations 4.3 and 4.4.

I T4 PTw reader X Gfea er A4
‘=@ xB~ P o (4) (43)
tag X Rx,reader 7
n=uvx cos(a) = € X fm (4.4)

2f

For phase measurement, the Impinj R420 reports both the phase angle and instantaneous Doppler
shift. This is advantageous because computing the Doppler from the phase (denoted by ¢) requires
computing the change in successive phase measurements, which assumes that the same antenna and
interrogation frequency were used between those interrogations. Phase-based velocity estimation

55;99

(shown in Equation 4.5) computes a more accurate velocity estimate since it incorporates the

time (t,) between those successive interrogations, whereas the reported Doppler shift is subject
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to noise artifacts at the interrogator®?.

However, we use the Doppler measurement reported by
Impinj to avoid the restrictions imposed by requiring a constant interrogation frequency, tag, and
interrogator antenna, since the interrogation frequency changes at a rate of 5 Hz per FCC regulations

8

described in this Section. Per Impinj recommendations®®, we choose a slower interrogation rate to

increase Doppler shift resolution and, in turn, velocity estimation accuracy 8.

_¢ X (12 — ¢r1)

Fx (=) (4.5)

Multiple antennas allow for Direction of Arrival analysis via phase difference %, but we sought to
minimize infrastructure for a wearable device that could then be scaled to multi-tag and interrogator

environments.

4.1 Signal Model

RFID received backscatter power and “tag velocity” are, respectively, calculated via Equations 4.1
and 4.2. It is assumed that each measurement is subject to additive 0-mean stochastic noise term
€(t), resulting from quantization or measurement observation error. Additionally, the backscatter
power measured by f is subject to stochastic multipath fading. This fading term can be modeled with
a Rician distribution (or, more generally, a Rayleigh) if the variance of the multipath is known 10!,
However, we assume that the tag will be worn by the user right away, so that measurement of the
properties such as the phase shift of the backscattered signal is undesirable; these measurements are
likely to change upon use as the wearer moves about in the space. Additionally, some commercial
RFID interrogators such as the Impinj R420, used in this study, quantize the RSSI component of
é such that the amplitude and variance between inferred paths is likely to be observed as +1. Be-
cause the channel properties change with the shape of the knitted antenna, the distance between
the tag and the interrogator, as well as due to multipath fading, all of which is quantized by the
interrogator, we cannot reliably classify each data point into a backscatter path a priori. When
the properties of the multipath environment are known, such as might be the case in a fixed envi-

ronmental configuration, the RSSI properties from each multipath propagation can be modeled 192
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Additionally, fluctuations in RSSI can be modeled with respect to the distance between the tag and
interrogator as well as the distance to the groundplane!?3. A log-normal distribution has been used
when the environmental configuration characteristics can be measured a priori to estimate the path
loss exponent 1%4; however, because we use a dynamic environment in which the tag moves with the
wearer, we use other stochastic feature modeling approaches such as a Markov Switching Model,
Hidden Markov Model, and Markov Chain Monte Carlo, to classify the state of the channel in real
time.

The tag gain components Giqg and Greqader are elaborated in Equation 4.6, where A is the

effective antenna aperture of the interrogator or the tag due to the Friis Transmission Formula:

G = 4n AN 2 (4.6)

The remaining factors in Equation 4.6 are constant factors or related to the interrogating fre-
quency, which is constant between the interrogator and the tag. The effective aperture A,cqqer of the
interrogator remains constant, while that of the tag and knitted antenna (A:.y) changes over time
as the antenna is stretched and returned. Combining Equation 4.6 with Equation 4.3, we obtain

Equation 4.7:

é: TA _ PTI,T'eadeT' X (47T)\_2A7'eade7')2 « (i)4
(47T>\72Atag)2 X R PRx,reader 4 (4 7)
CA _ T4 _ PT:t,reader X Azeader .
Atzag xR At x PRz,reader

Using Equation 4.7, we observe that a change in frequency across adjacent 500 kHz channels
results in a constant factor increase in é of £ ~ 0.009, for all channel increases from 0 to 49 (the
constant factors revert back on a channel iteration from 49 to 0, so we only consider the constant

factor present in channel iterations 0 to 49). Here, we include the conversion from Watts to dBm
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units, which we denote by f’.

~r 1
C = 10l0910(()\4 X 100'1XPR1,7‘eader) )

s fh
G2 — G = —10logro 5

4
i (4.8)
fio = (fu +500kHz), f < 927.25M Hz
_ ~r ~r _ ft4]_ N
§ = (o — G1 = 10log1o ~ 0.009

(fe1 + 500k H 2)4

PRy reader (RSSI) is quantized to the whole number, so this residual term is not modeled precisely
and results in a small sawtooth pattern in f that repeats as the interrogation frequency iterates from
927.25 MHz back to 902.75 MHz (channel 49 to channel 0). Despite the small magnitude, because
we are observing oscillatory patterns in the data, it is desirable to remove any known oscillatory
patterns. Therefore, we correct the calculation of f per Equation 4.9:

. — 902. 6
C=Ctex|9—2x? 90210765“0 )] (4.9)

These corrected physical measurements are used in Chapters 8 and 9 to perform time-series
analysis and estimation of subject state using a wearable RFID-based smart garment device. Here,
we focus on structuring the ¢ and 7 physical signals for strain gauge analysis. ( is already highly
quantized to integers along the dynamic range, which is often under 5-10 dBm of RSSI. Further,
both the tag radius and effective aperture are subject to perturbations due to motion artifacts,

-2

tag 10to the same signal; often in our efforts, one factor is a noise

introducing a factor of r* and A
artifact while the other represents the desired signal. RFID-based inventory applications are not
concerned at the application layer with these perturbations, because the EPC tag component is the
desired signal and can arrive over any path; ranging applications can use fixed RFID tags and thus
hold constant the effective aperture component in favor of the radius. Machine learning techniques

are needed to inspect the aggregate ( signal in real time to separate motion artifact components

from one another.
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The tag velocity n signal uses the reported Doppler shift to compute the instantaneous tag
velocity. Small shifts in phase are reported more accurately by the Impinj in some applications®?,
and so it is desirable to use the phase for this calculation instead. However, this would require
discarding records except for those of the same interrogation frequency, because this also perturbs the
phase observation and subsequent velocity calculation. In other countries, continuous interrogation
at a single frequency is possible, and so a phase-based observation is facilitated®®. When the read
rate is large (i.e., 25 Hz or more), a phase-based velocity measurement is used since most records
will use the same interrogation frequency; however, it is time prohibitive to wait the 10 seconds that
would be required to complete a full cycle through all interrogation frequencies for this purpose, and
the Doppler-based velocity measure is typically favored for this application.

For fixed-tag applications, the tag delay spread can be used as an indicator of multipath propa-
gation %%, because these different reflective paths require different echo time durations to arrive at
the interrogator. Tag responses with a round trip time within %@ on either side of the mode of all
observed At, with oa; defined as the standard deviation of those values of At within one standard
deviation of the overall mean At.

Spurious spikes are possible due to power loss resulting from taking a non-ideal path in a mul-
tipath environment, or due to unwanted mechanical noise artifacts from ambient movements. To
eliminate these spikes, all peak amplitudes are identified in the window, and those power spikes
smaller than the first quartile of all power spike amplitudes, that do not correspond with a velocity
change greater than the first quartile of all velocity spike amplitudes, are removed.

This smoothed signal is converted to a square wave using classification via Fisher Linear Dis-
criminant Analysis (LDA)!%. The resulting ¢ and n are arranged as tuples in R? and separated
into stretching data points and non-stretching data points. Although there is some variation from
theoretical physical signal properties due to slight variations in physical characteristics among RFID
tags, as well as variations between human subjects in their exact movements®*, we wish to avoid fully
supervised training because a semi-automated approach is desirable, and because full supervision

of the start and endpoints of the observed activity, such as respiratory behavior, would be difficult.
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However, LDA requires training classifications, so we employ a semi-unsupervised approach. The
first 30 seconds of data is observed and assumed to be “normal” respiratory activity of unknown
parameters.

To provide this training data, a Hidden Markov Switching Model is applied to these 30 seconds
of data to search for the centroids of the stretching and non-stretching records. A Hidden Markov
Switching Model assumes that data being considered falls into N distinct probability distributions
or “regimes.” In our case, we assume that these are Gaussian distributions, and that there are N = 2
such regimes to be considered (stretching and non-stretching). A Markov Switching Model works
by estimating the properties (i.e., the mean p and the standard deviation o) of these distributions,
and then predict with what probability a data point fits into each distribution. One advantage
of a Markov Switching Model is its Markov property: the classification of the previous data point
is considered when classifying the current data point, so some temporal dependency is considered.
This is advantageous in our applications because temporal persistence in each state is assured: if one
takes a breath, it will cause a relatively prolonged stretch of the band relative to the interrogation
rate. Therefore, a Markov Switching Model constructs a 2V x 2V probability state transition matrix
that describes the probability of switching from any one regime to any other (including the current)
regime. Each probability is the Bayesian likelihood P(0|z:,x¢—1) for regime 6 and data point a;.
The probability distribution of  can be computed easily by observation of the mean and standard
deviation of the population. For N = 2, we also have P( = 0) = 1 — P(# = 1) by the law of
total probability. A search using Gradient Descent via the Maximum Likelihood product of the
probability chain is used to find an optimal or approximately optimal set of distributions for the
conditional probabilities P(0|x¢, x;—1). Gradient Descent over the distributions’ properties according
to their maximum likelihood approaches the ideal distribution parameters as the number of Gradient
Descent iterations increases by maximizing the probability of classifying a given data point to either
regime in that iteration.

Subsequent data windows are fit to this model to obtain the transition points between stretching

and non-stretching activity. ¢ and 7 tuples are separated into these two categories according to their
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classification by the Hidden Markov Switching Model. Because a Markov Switching Model separates
data into two classes without assigning meaning to those two classes, class 0 is arbitrarily defined
for consistency to be that class whose mean value of ( is smaller in that window. The Markov
Switching Model produces two distributions of observed data, roughly into two classes (stretching
and non-stretching). The multivariate separability between the two classes is defined by Fisher’s
LDA measure in Equation 4.10, for covariance matrix 3y and mean pg in class 6.

o (S0 + %)~ (11 — pro) - (111 — pro)® (4.10)

((Bo +21)"H(p1 — 1)) (Bo + 21)((Xo + 1)1 (p1 — po))

Using Equation 4.10, we determine the likelihood ratio of a data record belonging to one or
another of these distributions. Classifications result in a square wave that approximates the desired
signal from the physical observations of ¢ and 7. The likelihood of classifying into class 6 given data

record = and Markov predicted class centroids 6 is given in Equation 4.11.

1
U6]2:0) = (=1)"((z — 1) "Ly (& — po) + (L)) (4.11)
6=0

The likelihood scores from Equation 4.11 are evaluated via a sigmoid function (Equation 4.12)
centered around an offset 17 equal to the mean of those scores computed for data records that were

classified into class § = 1 by the Markov Switching Model.

s(z;pih) = (1 + exp(—x + 1ir)) ™+ (4.12)

Additionally, a cumulative density function p is defined via a histogram for those likelihood
scores classified by the Markov Switching Model into each class: 1(0]z; 0 = 0) and 1(0]x;6 = 1). The
likelihood ratio of the Markov Switching Model classifying a given score into one class or another
measures the confusability between the two classes. This ratio is given via Logistic Regression in

Equation 4.13.

r(610) = (1 + exp(~In(p(8l6 = 1)(1 —p(8ld = 0)) ")) " (4.13)
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These likelihoods s and r are combined by taking their product. Rather than apply a simple
threshold a priori, as is typical in discriminant modeling and analysis'®7, the changes in classifi-
cation are identified dynamically by inspecting peaks of the signal formed from the product rs.
Dynamic classifications allow tolerance for changing environmental conditions without specifying a
threshold for depth of stretch given the distance from the interrogator and a complete model of the
environment. Strain gauge activity such as respiratory behavior causes likelihood transitions that
shift from one class to another throughout the duration of the stretch. Because we are already able
to determine lack of stretching activity in the window (see Chapter 6) and changes in underlying
environmental conditions (see Section 6.6), we can ignore these cases here and identify the shifts
in likelihood classification to form a square wave from the backscatter strength signal ¢ and the

velocity signal 7.

4.2 Software Infrastructure

For comparison testing across interrogation devices and RFID garment devices, it is preferable to
obtain data from existing devices in a format compatible with our RFID time-series data. Where
possible, digital data is collected using client driver software modules from devices such as the Philips
50XM fetal monitor, and emitted for graphical display or statistical analysis as described for our
RFID-based sensors. Side-by-side data plots from the RFID reader and 50XM tocodynamometer are
shown in Figure 4.1, with a comparison of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>