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Wearable Smart Garments for Health Monitoring on the 
Internet of Things (IoT)

• The problem: currently, medical monitoring devices such as uterine monitors or respiratory 
monitors are tethered to a monitoring unit:

• … requiring that the wearer remain somewhat stationary, increasing the risk of blood clotting
• … restricting ambulatory periods such as restroom breaks, 

unless monitoring is discontinued

• Wireless monitoring devices have emerged, but require a battery or rechargeable battery source.
• Wearable technology often consists of a watch, or sensor, attached to the clothing.
• Monitoring devices look for readings “outside the normal range” and alert the parents, 

perhaps unnecessarily.
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Wearable Smart Garments for Health Monitoring on the 
Internet of Things (IoT)

• “Normal range” varies by the wearer, but monitoring is often done on-demand.
• Devices are often used when needed, which is not conducive for baselining.
• The 95% body temperature range was 96.3-99.1o F (mean 97.8o F), with age, 

race, and gender correlations in a study of 35,000 patients (Z. Obermeyer, et 
al, BMJ 2017;359:j5468).

• 8.2% of variation were explained by comorbidities.

• Normal respiratory, temperature, and pulse ranges are wide and vary with age 
and physical activity.

• A 1o C increase in body temperature correlates to an additional 10 beats per 
minute in a study of 31,000 children (P. Davies and I. Maconochie, EMJ 2009; 
26).

• Relationships between heart rate, skin temperature, and blood glucose 
concentration suggest that wearable monitors can aid in management of Type 1 
Diabetes during aerobic exercise (K. Turksoy, et al, Sensors 2017; 17(3):352).
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Wearable Smart Garments for Health Monitoring on the 
Internet of Things (IoT)

• Passive wireless technologies such as some Radio Frequency 
Identification (RFID) tags harvest power from the wireless signal, enabling 
inventory tracking without an external power source.

• Passive RFID repeatedly: 
• powers a small state machine on a chip from the interrogation 

signal, 
• does rudimentary coordination with other RFID chips in the field to 

avoid collisions, and
• encodes an identification code into the reflected signal back to the 

interrogator.

• Poll repeatedly to 
prevent signal loss due
to collisions.
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Challenges with Sensing via RFID
• RFID physical tag response properties change as the tag moves in space.

• Phase, Doppler shift, Received Signal Strength Indicator (RSSI)

• A tag placed near the body exhibits oscillatory or other artifacts as the body moves.
• Unfortunately, the tag properties also change even in a static environment, due to multipath 

fading and shadowing.

• A knitted metallic thread antenna is placed into a wearable “smart garment device,” deployed 
about the RFID tag.

• This antenna is shaped for optimal impedance matching to the RFID tag at a single frequency 
in the UHF RFID band (902-928 MHz).

• We are required to “channel hop” every 200 ms over 50 500 kHz channels in this band.
• The backscattered signal can be weak due to the proximity to the body and the small 

movements to the knit antenna involved in human respiration, rather than to the tag itself.
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Challenges with Sensing via RFID
• As the wearer breathes, the shape of the knitted antenna deforms, 

degrading the impedance match and the physical properties of 
the weakened RF backscatter response.

• … as does a change in frequency.

• Additionally, observed changes in RF backscatter properties are 
subject to variation in wearer fit and positioning.

• RF backscatter properties change as the tag itself moves in space.
• Unrelated movements by the wearer also result in 

perturbations in the backscatter signal properties being 
monitored.

• Our goal is to monitor the return loss, distance, and antenna shape 
via the physical properties reported by the RFID interrogator.

• Off-the-shelf interrogators report limited, quantized 
measurements.

• Changes in antenna shape, position, and interrogator occur 
simultaneously.
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State of the Art
• Existing work in RFID-based localization uses Angle of Arrival (AoA) information available on 

other interrogators or by using multiple interrogation antennas, fused with eigenspace methods 
like MUSIC or maximum likelihood methods.

• Many wearable sensors are portable devices tethered to the human body, such as an 
acoustic tracheal sensor to detect snoring spells with 89% accuracy.

• Others are “contactless,” but assume a fixed deployment for controlled study.

• Many RFID-based localization sensors assume a fixed frequency in the 900 MHz band 
and a multi-sensor deployment, bypassing deployment challenges with SDR.

• Other RFID-based monitors detect coarse movements or behaviors.

• non-RFID wireless protocols are sometimes used with success, for example, the 
WiBreathe system, but this assumes that subjects are a certain distance apart, 
and use multiple active transceivers.  

• A knitted fabric antenna enables mobility and ubiquity, but degrades the signal due 
to absorption, and requires sensing fine movements of the antenna rather than 
coarse movements of the tag itself.
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State of the Art
• For example, Uysal and Filik (ELECO 2017) use a constant 900 MHz band signal from two 

active Software Defined Radios (SDR) acting as transmitter/receiver to monitor respiratory 
patterns on a human body. 

• Active transmitters off of the human body enable a high signal to noise ratio in 
which outlier spikes are removed via Hampel Identifier. 

• Noise is separated from the signal via eigen decomposition by the MUSIC algorithm.
• Respiratory rate is estimated via maximum likelihood (MLE) of FFT.
• Although the deployment is contactless on the human body, the body must be 

within range of the two radios and mobility is assumed to be captured as a noise 
vector by the MUSIC algorithm.

• An unobtrusive wearable device causes noise in the system that is not well 
separated by MUSIC, but enables subject mobility.

• Frequency hopping in the 900 MHz band introduces noise artifacts.
• FFT MLE estimation is a subject of our prior work (SPMB 2016).

• These approaches require either more sophisticated RFID interrogation equipment, 
additional infrastructure per deployment, or training data in order to perform 
classification.
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Secure and Efficient Monitoring of RFID-Based Devices
• Data collected and stored for biomedical processing must be stored in a framework 

that is:
• HIPAA compliant, and
• capable of polling RFID tags as quickly as possible to maximize the sampling rate 

used to observe small changes in backscatter properties.

• We must be able to drive and sample from a heterogeneous suite of sensors in real-time.
• As the sampling rate increases, the network overhead from the interrogator 

devices, as many interrogators transmit tags one-by-one as they are received.
• Configuring the interrogator to send tags in batch often results in aggregation of 

the RF backscatter properties, because they are assumed by the interrogator to be 
irrelevant to the application layer.

• We restrict ourselves to a single RFID 
interrogator, antenna, and knitted 
chip antenna.
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Secure and Efficient Monitoring of RFID-Based Devices
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Physical and Sensing Layer
• Client drivers for the Impinj interrogator 

was modified to augment 
measurement reports with Doppler 
and Phase fields.
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• The Low Level Reader Protocol (LLRP) library (sllrp)
was modified to implement a message queue, 
combining the Producer-Consumer pattern with a 
Top-Half/Bottom-Half processing paradigm.



Data and Presentation Layers
• RF backscatter properties are treated as potentially Protected Health Information 

(PHI) under HIPAA law, and is password protected/logged.
• A symmetric key alone would not be useful, since the ciphertext would reveal 

the same patterns as the unencrypted numerical data, so a block cipher is 
used.

• To enable decrypting individual blocks of data during random access, a 
rotating temporary one-time password (TOTP) is generated dynamically and 
used as a salt in conjunction with the user password.

• The database is exposed via live RESTful web services using HTTP over SSL.

• By disabling Nagle’s algorithm for 
transport, we control data 
throughout and prevent buffering of 
small messages (such as a single 
interrogation report) for arbitrary 
periods of time.
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• P: power (Watts)
• G: gain (dB)
• c: speed of light in a vacuum
• 𝜆𝜆: interrogation wavelength 

(meters) (c/frequency “f” in Hz)
• r: interrogation radius (meters)
• R: return loss (dB)
• v: tag “velocity” 

(meters/second)
• A: effective aperture (meters2)
• 𝛼𝛼: interrogation angle (radians)
• 𝑓𝑓𝑚𝑚 Doppler shift (Hz)

Feature Extraction from Physical Properties of RFID: Signal Model

• To overcome confusion in the signal, the signal model incorporates the 
transmission frequency according to the Friis Transmission Formula:
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• Channel-corrected received power 
𝜁𝜁 is obtained by combining Friis
Transmission Formula with the 
equation relating gain and 
aperture, and separating constant 
terms from those that change with 
antenna movement:
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Feature Extraction from Physical Properties of RFID
• We limit our training observations to the “biologically feasible” class only.

• For example, no training data are collected from “non-breathing” periods.
• Some environmental deployment properties are unknown prior to observing 

data, so semi-supervision (unlabeled observation of normal use) is necessary 
in order to establish baseline data from which subject state changes are 
determined.

• Thus, we do not train the classifier on the subject’s activity states, but rather 
only on environmental noise.

• Further, we limit any use of perceptron-based classifiers (i.e., Support Vector 
Machine) to a low-dimensional feature space, because the amount of training 
data required increases exponentially with the feature dimension.

• 2.3 minutes of training data are needed for a 1% error tolerance with 95% 
confidence.

• To evaluate features computed from the RF physical properties, we use the Fisher 
Linear Discriminant Ratio (FDR).
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Feature Extraction from Physical Properties of RFID
• RF energy absorbed by the body results in a dynamic range of 1-2 dBm as opposed to 5-10 dBm 

(2-5 feet away) when held away from the body, sacrificing feature separability.

• RSSI mean and standard deviation of short windows (0.5-4.0 seconds) of data provided limited 
separation, which improved with the length of the window.

• Longer windows sacrifice real-time processing performance.

• Much of the separability lost in the data is attributable to the mixing of non-actuating periods 
even during the “breathing” state, due to pauses in-between breaths.

• The Discrete Fourier Transform (DFT) yields the maximum magnitude at a given frequency for 
short windows of data.

• The maximum DFT magnitude has 
a Fisher score of 0.49 when 
separating between classes, but 
a score of 3.85 if the data 
in-between breaths are removed 
from the breathing class samples.
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Overcoming Feature Imbalance in Biomedical Classification

• Synthetic anomaly generation enables Two-
Class Support Vector Machine (SVM) for 
classification, which is advantageous over a 
One-Class Support Vector Machine when the 
relationship between the anomaly data and 
the observed data is known.

• For example, we know that the anomaly 
data should appear away from the 
extreme end of the normal data on one 
side only.

• One-Class SVM classifiers are rigid in 
classifying data outside of the observed 
margin, and identify anomalies in any 
direction away from the margin.

• A Two-Class SVM enables likelihood estimation 
of each prediction based on its distance from 
the two class centroids.
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State Classification Using RFID Features
• To classify immediate strain gauge state, a Support 

Vector Machine (SVM) is used with semi-
supervised training data.

• Synthetic anomalies are generated and injected 
into the data, enabling the use of a Two-Class 
SVM, overcoming the limitations of a rigid 
omnidirectional boundary of a One-Class SVM.

• Platt Scaling enables classification at a 
probabilistic threshold, via logistic regression with 
weights fit using isotonic regression.

• We observed faster classification of respiratory 
cessation and an improvement over One-Class 
SVM classification from a Receiver Operating 
Characteristic (ROC) Area-under-the-Curve (AUC) 
from 0.71 to 0.94.
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• For non-perceptron semi-unsupervised detection of long-term state events (i.e., 
apnea), we use a hypothesis test on the spectral magnitude of the RSSI departure 
from the local mean, whose t-score is a separable feature.

• Spectral hypothesis testing enables a shorter window than the perceptron, at the 
cost of spectral leakage that results from the shorter window.

State Classification Using RFID Features
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State Classification Using RFID Features
• For discrete events (i.e., uterine monitoring, 

individual respiration detection), the first order 
difference of the correlation between the 
observed RSSI and tag velocity is used to state 
change and duration detection, which 
correlate more strongly during strain motion.

• Inflection points on the sliding root-mean-
square of 𝛿𝛿 are used to identify band strain.

• Correlation classification improved significantly 
over individual feature analysis.

• The velocity measure improved (ANOVA 
p 0 0.0001) over 𝜁𝜁 alone for detection of 
the start and end of a strain motion

• 𝜁𝜁 improved over the velocity measure for 
classifying true respirations (ANOVA p = 
0.001).

• Events were identified within 0.57 seconds 
by Root Mean Squared (RMS) error.
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State Classification Using RFID Features
• Using the relationship between power and 

velocity for activity detection, such as that 
observed during respiration, uterine activity 
or movement of the extremities, a Hidden 
Markov Model (specifically, a Markov 
Switching Model) is fit with semi-unsupervised 
data that can contain samples from each 
class without knowledge of the classes 
themselves.

• A tuple [d, r, 𝜁𝜁, v] representing the Doppler, 
RSSI delta from mean, calibrated Prx, and 
velocity-by-phase, is used to fit the model.

• The Markov Switching Model applies a 
Maximum Likelihood Estimate (MLE) of each 
tuple belonging to one of a set of classes 𝜃𝜃
(i.e., band stretching or stationary).
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• Like a Markov Switching Model, we use a Markov Chain Monte Carlo (MCMC) simulation to 
search for the existence of two distributions of data within the window.  

• The Markov Switching Model does this by building a semi-unsupervised model of data using 
gradient descent, and may converge to a local optimum. 

• MCMC uses unsupervised search, and 
monitors the changing properties of 
the identified distributions.

• By observing changes in the 
properties of the identified
distributions, we can detect
point-in-time changes to the 
environment or subject that may 
require retraining (i.e., mean trend).

• MCMC also classifies each data point 
within the window to one of the 
distributions.

Determining Dynamic Retraining Conditions
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Determining Dynamic Retraining Conditions
• Using MCMC and the hypothesis score on maximum spectral magnitude, we vote on the 

following retraining conditions (including apnea) to determine a change in environment or 
subject:

• Mean or variance of the stretching distribution
• Mean of the non-stretching distribution
• Number of distributions detected
• Percentage of data points most likely to fit in the stretching distribution
• Prx spectral t-score 95% outlier
• Prolonged single-state output by the Markov Switching Model

• If any single condition persists for N continuous windows, voting is overridden by that alert.
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Rate Estimation
• To estimate respiratory rate, we fuse discrete signal information with spectral measurements.  

• For example, changes in classification and maximum spectral magnitude

• A Short-Time Fourier Transform is used on a sliding window of RSSI data, considering those 
magnitude peaks corresponding with the most centered frequency by phase.

• To account for spectral leakage, the spectral centroid, a weighted average of the 
frequency by spectral magnitude, is taken for the final spectral frequency estimate.

• Taken independently, each rate estimation measurement is subject to perturbations due to 
environmental noise (i.e., multipath, subject movements) and process noise (i.e., spectral 
leakage or rounding error due to quantization).

• However, each estimate is informative of the true underlying measurement, and can 
be fused via a probabilistic multivariate mixture model.
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Multi Measure Fusion for Robust Rate Estimation
• We perform Expectation Maximization (EM) on a Gaussian Mixture Model (GMM) constructed from 

point estimates from each measurement approach.
• Local variances are used to estimate the uncertainty within each estimate.
• The likelihood of each measurement is computed within the GMM, and the final fused 

estimate is a weighted average of the individual point estimates by their likelihood.

• If the true rate changes, the variances 
of all estimates should shift together, 
barring individual estimation error.

• A full covariance matrix is 
provided to the GMM model, 
modeling the change in 
variance of each pair of 
measurements as well as the 
individual measurement 
variances.
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Multi Measure Fusion for Robust Rate Estimation

• Variance is reduced by ~2/3 standard deviations from the mean of the measure 
variances.

• Fusion was not destructive in any case by Root Mean Squared Error, and was, at 
times, within rounding error of optimal.

• Average estimate error for human trials using 15 rate varying scenarios is given 
below:
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Spectral Centroids
RMS Error

Peak Detection
RMS Error

GMM
RMS Error

11 bpm 9 bpm 6 bpm

FFT with HMM 
Avg RMS Error

Peak Detection
Avg RMS Error

Spectral Centroids
Avg RMS Error

GMM
Avg RMS Error

6.0 bpm 5.0 bpm 3.8 bpm 3.6 bpm
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Actionable Prediction of Next Respiratory Activity
• A log-normal distribution of 

infant respiratory activity has 
been observed in the literature, 
which has been fit using an 
autoregressive model.

• We applied this model to 
sample respiratory data to 
predict the most likely time of 
the onset of the next breath.

• To determine the beginning of 
each breath, the Markov 
Switching Model was applied to 
generate a square wave, 
compressing high-frequency 
fluctuations into a single pulse.
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• An affine projection adaptive filter uses 
Lagrangian constrained optimization to 
favor small changes to the filter while 
correcting the most recent observation 
error to 0.



Actionable Prediction of Next Respiratory Activity
• IBI instability is a predictor

of an apnea event in
preterm infants (Salisbury, 
et al. J Appl Physiol
1985; 107(4): 1017-1027).

• Ventilator equipment is 
intrusive.

• Instantaneous changes in 
rate can be detected 
using rate detection 
algorithms.

• Adaptive filter slightly
worse overall in RMS
error, but improved 
after converging.

• RMS error of 0.4 seconds.
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Experimental Protocol and Human Subjects Testing
• A Laerdal SimBaby was used for simulated laboratory testing.  

The SimBaby can be programmed using various scenarios to 
implement biologically undesirable phenomena that we can 
detect using the wearable smart garment Bellyband device.

• The SimBaby was programmed to breathe at a predefined rate 
for a predefined period (i.e., 30 breaths per minute for 30 
seconds, followed by 15 breaths per minute for 30 seconds), 
interjecting prolonged periods of apnea in-between.
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Experimental Protocol and Human Subjects Testing

• Additionally, a Philips 50XM Tocodynamometer was used for uterine activity comparison, and a 
respiratory pressure monitor was used to capture ground truth from the SimBaby.

• The 50XM was integrated into the IoT sensor network software framework to facilitate data 
collection from each device.

• Visual contraction information was collected from the tocodynamometer pressure sensor and 
RFID Bellyband for visual comparison, 
as would be seen in a hospital setting 
during labor and delivery.
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Experimental Protocol and Human Subjects Testing
• Additionally, an infant human respiratory protocol (IRB 1504003601) and adult human 

heart/respiratory protocol (IRB 1604004440) have been implemented to collect human subjects 
data.  

• A third protocol is approved for uterine monitoring during labor and delivery (IRB 1504003602). 

• Adults are asked to breathe normally, with respiratory activity tracked by counting breaths or 
using a respiratory monitor for ground-truth monitoring.

• Infant respiration is noted on the monitoring equipment at the NICU for comparison.

• Interrogation distance is currently 50 to 100 cm from the body.
• At these distances, the maximum peak Specific Absorption Rate (SAR) is at most 0.25 

W/kg.
• The maximum allowable SAR is 0.8 W/kg.

• The power exposure at these distances is at most 0.03 mW/cm2.
• The Federal Communications Commission (FCC) publishes a Maximum Permissible 

Exposure (MPE) of 0.6 mW/cm2 in the 900 MHz band.
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Conclusions and Contributions

• We provide a software 
framework for the real-time 
collection of physical properties 
of heterogeneous IoT sensor 
networks.

• This includes contributable 
modifications to physical 
layer libraries for RFID data 
collection.

• These software frameworks have also been used to support other RFID-based 
IoT sensor systems, including RFID-based heart monitoring and limb movement 
monitoring to detect the onset of symptoms of deep venous thrombosis (DVT).

• We also provide a pluggable software framework for statistical processing and 
multi-estimate fusion on physical properties of single-tag, single-interrogator RF 
physical properties to infer wearer state, integrating securely with the physical 
layer framework.
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Conclusions and Contributions

• We developed, tested, and 
compared adaptive and predictive 
algorithms for a wearable 
strain-gauge sensor applicable to a 
variety of use cases.

• We mitigated the effects of 
quantization, environmental noise, and mechanical noise, by performing multi-
measurement fusion on these individual algorithms, combining them in real-
time to establish a more accurate estimate of wearer state.

• By generating synthetic anomaly data, we enable semi-unsupervised 
training of traditional classifiers, allowing for multi-classifier fusion 
algorithms that operate on multiple tags (i.e., sensor networks or 
reference antennas).

• Our approach yielded statistically significant improvements in 
classification and state monitoring of passive wireless wearable smart 
garment devices.
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Future Work
• We are integrating multiple knit antennas for multi-sensor fusion by observing, 

modeling, and then mitigating the environmental noise from the main respiratory 
tag.

• We will study the effects of band placement, body composition, and band fit on 
the physical properties returned from an RFID Bellyband, to deterministically 
reduce noise artifacts due to these causes.

• We will evaluate RF communications 
beyond RFID for biomedical state 
monitoring.

• We are evaluating the use of RFID-based 
passive heart monitors as a respiratory 
monitoring estimate.
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Physical and Sensing Layer

• The Producer-Consumer pattern uses a message 
queue that is populated by the interrogator 
(“the producer”), and emptied in First-In-First-Out 
(FIFO) order by the client (“the consumer”), each 
at independent rates.

• The message queue is constructed to be elastic 
and blocking, so that the client is held until data 
is available if it exhausts the message queue, 
and the queue expands dynamically to support 
the interrogator if its interrogation rate is higher 
than the client read rate.

• Top-Half/Bottom-Half processing and overriding 
default network transport behavior (Nagle’s 
algorithm) enables real-time processing.
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Feature Extraction from Physical Properties of RFID
• FDR computes the ratio of the squared difference of the means to the sum 

of the variances of data in each “class.”
• A feature is more cleanly separable between classes if the mean of 

each class is far apart, and the variances are small enough to avoid 
overlap at the tails.

• Since it is biologically infeasible to collect “breathing” and “non-
breathing” class samples, we use a Laerdal SimBaby mannequin to 
simulate these states.

• We observed that separability varied with the respiratory rate, with higher 
respiratory rates yielding better separability between classes.

• There are fewer, and shorter, periods in between breaths at higher 
respiratory rates, such that there are fewer “non-breathing” data 
points mixed in with the “breathing” class.
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State Classification Using RFID Features
• Low Fisher scores indicate greater potential for overlap among the data between 

classes during classification.

• Raw spectral analysis may be inaccurate due to the noise embedded in the spectrum 
of interest, and imprecise due to the frequency spacing resulting from the short 
windows used for real-time processing.

• Temporal relationship information will be exploited for state classification, by 
establishing a semi-supervised baseline.

• 20 seconds of data are observed under “normal” conditions (i.e., normal 
respiratory activity).

• If 95% outliers below the mean are observed for a period of 10 seconds (the definition 
of apnea) or more, an apnea condition is observed.

3/10/2019 | 49



State Classification Using RFID Features
• Why these classifiers?

• Each classifier was effective but has potential limitations.  
• Aggregate perceptron classifiers require more training data, balanced training data 

(which we overcome with synthetic generation), and work better as the training size 
and window size increase.  

• Spectral classification requires a short enough window for real-time performance, but a 
long-enough window for spectral resolution, which we overcome for now by 
considering the overall spectral density as it changes over time via a t-test.  

• Discrete correlation uses temporal information from changes in the signal phase over 
time to denoise the input signal before classification, which a Hidden Markov Model 
extends by comparing these changes against a training model, but requires training 
data and may converge to a local optimum.  

• MCMC requires no training and performs local classification data point by data point, 
and is conducive for monitoring trends for retraining, but individual data points 
perturbed by noise will not be filtered out by MCMC as it is with aggregate approaches 
such as the others.  

• We did not fuse the perceptron because of the window size, but the synthetic anomaly 
generation will enable fully supervised classification such as multi-knit antenna fusion 
approaches.
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Overcoming Feature Imbalance in Biomedical Classification

• Existing methods, such as the SMOTE method, exist to overcome challenges in performing 
classification when an imbalance exists in the training data.

• This is often the case when detecting anomalies.
• These methods assume that at least some example reference data exists for all 

observable classes.

• We adapt this approach and generate synthetic anomaly data for the infeasible class 
using properties of the observed training data.

• Selected “breathing” class data are reflected about an axis defined by the smallest 
observed mean, and the mean of the observed standard deviations.  

• Only those data greater than the mean of all windows are reflected, so as to avoid 
fitting data observed during transitional periods in-between each breath.

• To overcome the imbalance between the classes, and to allow for overlap between the 
classes, additional training points are generated by sampling from a normal distribution 
centered at the 5th percentile of the means, and the standard deviation of the means.
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Determining Dynamic Retraining Conditions
• Because we do not utilize fully supervised training data samples to 

identify anomalies in wearer state, but rather compare changes in the 
feature space over time, it is necessary to monitor the underlying 
environmental baseline for changes that require a re-configuration of the 
environmental parameters.

• For example, if new objects appear in the room, or if the wearer makes 
major movements toward or away from the interrogator, these would 
need to be recalibrated for future classification and detection.

• Unfortunately, these changes in baseline appear in-band with changes in 
physical RFID backscatter properties due to strain motion on the 
Bellyband device.

• As a result, we use a Markov Chain Monte Carlo (MCMC) simulation to 
detect one or two distinct distributions of data within each window.
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Determining Dynamic Retraining Conditions

• The MCMC simulation optimizes the goodness of fit within the identified 
distributions, and converges on a solution after a certain number of iterations 
N.  

• Convergence will be optimal as N  ∞.

• There are 2 * 1032 combinations of 30 data points (0.5-1.0 second of data), 
which is infeasible for exhaustive search.

• Rather than rely on semi-optimal convergence, we utilize properties of the 
data points most likely to fit to each identified distribution, and observe their 
changes over time as a higher order feature.

• Specifically, the mean of each distribution is monitored over time for 
significant shifts from that observed during baseline configuration.
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Rate Estimation
• Additionally, discrete methods such as significant (> 3 𝜎𝜎) peak detection over 𝜁𝜁 and 𝑐𝑐𝑐𝑐𝜋𝜋𝜋𝜋 Δ𝜁𝜁,Δv are 

used to estimate respiratory rate.

• For comparison with spectral centroids, Hidden Markov Model is applied to the frequency estimate 
to eliminate large fluctuations in the frequency due to noise, accounting for temporal progression 
in respiratory rate throughout the sliding window to compute a maximum a posteriori likelihood 
spectral frequency estimate.

• A biased frequency estimation by Quinn is also applied 
that reduces estimation error variance due to spectral 
leakage to near the Cramér-Rao bound.

• Generally, spectral centroids outperformed both of these 
estimates, but not in all cases; maximum likelihood fusion 
from these estimates will be used to form an improved 
rate estimate.
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Multi Measure Fusion for Robust Rate Estimation
• The GMM fuser weights each measurement according to its Fisher information, but 

uses maximum likelihood estimation by using each measurement’s local history 
variance as a measure of uncertainty.

• This allows EM “fusion” even for a single measurement.
• EM estimates are smoothed with a Kalman filter that weights process variance 

over measurement noise, since measurement noise should be mitigated by 
the fuser.

• EM is an unbiased estimator, which we form by weighting the minimum variances 
from the measurements.

• Choosing the measure with minimum variance would theoretically yield a 
minimum variance unbiased estimator, we perform weighting to allow for 
unknown process and measurement noise embedded within these 
measurements.

• Quinn interpolation bias is reduced to near-minimum RMS error by EM fusion of 
unbiased estimators such as mean spectral centroids or discrete measures.
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Experimental Protocol and Human Subjects Testing
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