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Testing (Recap)

● Abstract: process test cases, check results
● However: tests can only show presence of errors, not absence.
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Testing (Recap 2)

● Validation testing
– Show that software meets requirements
– Test cases modelled after typical use cases 

● Defect testing 
– Obvious goal: find bugs/errors/design flaws!
– Test cases contain atypical/erroneous data

http://creativecommons.org/licenses/by-nc-sa/4.0/


16/01/21 Software Engineering -  © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

Testing: Variants

● Testing is possible at many levels/stages
● Development testing

– unit testing
– component testing
– system testing

● Performance testing
● User testing
● Release testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Development testing strategies (1)

● Partition testing (defect testing)
– Determine equivalence partitions for input data
– Equivalent behaviour for all inputs from one partition
– Select test cases from each partition and at partition boundaries
– Related to path testing/code coverage (equivalent behaviour  →

same execution path), see lecture 8
– Usually requires some knowledge about internals, i.e. pure black-

box testing difficult

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Development testing strategies (2)

● Guideline-based testing (defect testing)
● Select test cases known to be error-prone

– NULL for pointers
– NaN, -0, inf for float/double values
– INT_MAX, -INT_MAX, 0 for integers

● Sequences/arrays/vectors
– Sequences with 0 or 1 values
– Sequences with different lengths for each test
– Access first/middle/last element of sequence

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Development testing strategies (3)

● Example:
– Function which accepts 4-10 input values
– Each value is 3-digit integer >= 100

● Partitions  see diagram→
● Guidelines:

– Also test with empty sequence/   
single value

– Test with input values                    
of 0/INT_MAX

n < 4 4 <= n <= 10 n > 10n:

0   1 3     4    5 9    10  117

v < 100 v >= 100 v >= 1000v:

99 100 999  10000                                                                                        MAX

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Performance/stress testing

● Mainly relevant for back-end systems (servers, databases) – 
hybrid verification/defect test

● Usually relies on required performance (e.g. 
transactions/second) and exceeds this limit

● Goal: test failure behaviour
– soft fail: just fewer transactions than requested
– hard fail: system crash/data loss

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Fuzzing

● Intentionally flood the component with random/garbage input
– More data per time than during normal operation
– Malicious/garbage data values

● Also possible for UIs, e.g. monkeyrunner  on Android 
(generates random touch events)

● Often used for security testing, i.e. to find exploitable bugs

http://creativecommons.org/licenses/by-nc-sa/4.0/
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User testing

● Tests performed by end-users, not developers
● Focus on user interface, not internals

– Paper prototypes (before any code is written), mockups (e.g. using 
HTML5/Flash)

– “Classic” usability study, think-aloud testing   (invite testers to lab, 
observe usage)

– “In-the-wild” study  daily usage scenario + recording/logging of →
comments, interactions, …

– A/B testing: provide two different variants of UI to two groups of 
people, compare e.g. efficiency

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Release testing

● Final verification tests before delivery
● Usually black-box testing, relying only on 

specification/requirements
● Also called acceptance testing, may involve customers/users
● In agile processes (no rigid requirements):

– Part of each cycle (e.g. Scrum)
– Performed by “product owner”
– Some documentation/”sign-off”recommended

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Continuous Integration (1)

CI: agile method, collection of “best practices”

● Maintain a code repository
– Use branches sparingly

● Automate the build
– A single command (e.g. “make”) should build everything

● Make the build self-testing
– Tests should be integrated into build process

Source: https://en.wikipedia.org/wiki/Continuous_integration

https://en.wikipedia.org/wiki/Continuous_integration
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Continuous Integration (2)

Often considered the most central part of CI:

● Everyone commits to mainline every day
– Keeps number of conflicts low

● Every commit to mainline should be built
– Should also be automated, e.g. with Jenkins,                                           

Travis-CI (integrated with Github), …

Source: https://en.wikipedia.org/wiki/Continuous_integration

https://en.wikipedia.org/wiki/Continuous_integration
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Continuous Integration (3)

● Keep the build fast
– Prerequisite for frequent re-builds

● Test in a clone of the production environment
– e.g. test apps on real phone, not simulator
– Separate test env. can introduce new bugs
– Use scaled-down production environment

● Make it easy to get the latest deliverables
– e.g. direct download access for customer

Source: https://en.wikipedia.org/wiki/Continuous_integration

https://en.wikipedia.org/wiki/Continuous_integration
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Continuous Integration (4)

● Everyone can see results of latest build
– Build problems are fixed quickly
– Often shown by physical                                                                            

indicators (see image)
● Automate deployment

– e.g. automated upload                                                                                          
to app store/beta testers

– “Continuous Deployment”

Image source (CC): https://en.wikipedia.org/wiki/Build_light_indicator

https://en.wikipedia.org/wiki/Build_light_indicator
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DevOps

● “Development” + “Operations”
● DEV side: very similar to, e.g., Scrum
● OPS side: stronger focus on                                                                  

software maintenance
● Heavy reliance on                                                                                

automation tools
● Useful integration of                                                                            

expertise, or just a way                                                                             
to reduce personnel?

Image source (CC): https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
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Build systems

● Compile & link
– See lecture 9

● Dependency resolution
– Internal: determine dependencies of objects, modules, source code 

etc. (often via timestamps)
– External: locate/install missing libraries, tools, headers etc.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Build systems (2)

● Test management
– Run test suites after (each?) successful compilation
– Provide overview of succeeded/failed tests, test coverage

● Install products – e.g. …
– Copy to suitable filesystem locations
– Create archives/packages
– Upload to app store

http://creativecommons.org/licenses/by-nc-sa/4.0/
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(Meta-)build systems: examples

● Make
● Autotools/CMake
● Ant/Maven/Gradle
● Eclipse/Xcode/Visual Studio

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Make

● Ancient in computing terms – created 1976
● Somewhat obscure syntax (“Makefile”)
● Only deals with internal dependencies
● Can be extended using external tools/scripts

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Autotools

● Makefile generator
● Widely used in open-source projects
● Only available for Unix-like environments
● Consists of multiple sub-tools (automake, autoconf, configure) 

which create a Makefile
● Also deals with external dependencies
● Very powerful, but also very obtuse

http://creativecommons.org/licenses/by-nc-sa/4.0/
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CMake

● More modern replacement for autotools
● Also generates Makefile or  Visual Studio XML
● Cross-platform (Windows, Linux, MacOS)
● Mostly a standalone scripting language

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Ant/Maven/Gradle

● Standalone build systems
● Focused on Java projects
● XML-based (Ant/Maven) or JSON-based (Gradle) project 

description files
● Cross-platform (Windows, Linux, MacOS)
● Often used for Android projects (esp. Gradle)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Eclipse/Xcode/Visual Studio

● Integrated Development Environments (IDEs)
● Build system, editor, RCS frontend, test manager,                     

UML tools, …
● Support multiple languages (usually at least Java/C++)
● Typical examples of CASE tools (Computer Aided Software 

Engineering)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Build systems: Summary

● Once again: one size does not fit all
● Build system can add lots of complexity
● Try to avoid “feature creep”
● Most open-source projects focus on CMake (C, C++) or 

Ant/Maven (Java)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Questions/Comments?

● Thanks for listening!

http://creativecommons.org/licenses/by-nc-sa/4.0/
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