
Software Engineering

Lecture 11 – Testing &
Continuous Integration

© 2015-19 Dr. Florian Echtler
Bauhaus-Universität Weimar

 <florian.echtler@uni-weimar.de>

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

mailto:florian.echtler@uni-weimar.de
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 2

Testing (Recap)

● Abstract: process test cases, check results
● However: tests can only show presence of errors, not absence.

Input
test

cases

I
e

Output
test

results

O
e

System
Inputs causing
anomalous
behaviour

Outputs revealing
presence of defects

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 3

Testing (Recap 2)

● Validation testing
– Show that software meets requirements
– Test cases modelled after typical use cases

● Defect testing
– Obvious goal: find bugs/errors/design flaws!
– Test cases contain atypical/erroneous data

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

Testing: Variants

● Testing is possible at many levels/stages
● Development testing

– unit testing
– component testing
– system testing

● Performance testing
● User testing
● Release testing

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 5

Development testing strategies (1)

● Partition testing (defect testing)
– Determine equivalence partitions for input data
– Equivalent behaviour for all inputs from one partition
– Select test cases from each partition and at partition boundaries
– Related to path testing/code coverage (equivalent behaviour →

same execution path), see lecture 8
– Usually requires some knowledge about internals, i.e. pure black-

box testing difficult

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 6

Development testing strategies (2)

● Guideline-based testing (defect testing)
● Select test cases known to be error-prone

– NULL for pointers
– NaN, -0, inf for float/double values
– INT_MAX, -INT_MAX, 0 for integers

● Sequences/arrays/vectors
– Sequences with 0 or 1 values
– Sequences with different lengths for each test
– Access first/middle/last element of sequence

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 7

Development testing strategies (3)

● Example:
– Function which accepts 4-10 input values
– Each value is 3-digit integer >= 100

● Partitions see diagram→
● Guidelines:

– Also test with empty sequence/
single value

– Test with input values
of 0/INT_MAX

n < 4 4 <= n <= 10 n > 10n:

0 1 3 4 5 9 10 117

v < 100 v >= 100 v >= 1000v:

99 100 999 10000 MAX

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 8

Performance/stress testing

● Mainly relevant for back-end systems (servers, databases) –
hybrid verification/defect test

● Usually relies on required performance (e.g.
transactions/second) and exceeds this limit

● Goal: test failure behaviour
– soft fail: just fewer transactions than requested
– hard fail: system crash/data loss

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 9

Fuzzing

● Intentionally flood the component with random/garbage input
– More data per time than during normal operation
– Malicious/garbage data values

● Also possible for UIs, e.g. monkeyrunner on Android
(generates random touch events)

● Often used for security testing, i.e. to find exploitable bugs

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 10

User testing

● Tests performed by end-users, not developers
● Focus on user interface, not internals

– Paper prototypes (before any code is written), mockups (e.g. using
HTML5/Flash)

– “Classic” usability study, think-aloud testing (invite testers to lab,
observe usage)

– “In-the-wild” study daily usage scenario + recording/logging of →
comments, interactions, …

– A/B testing: provide two different variants of UI to two groups of
people, compare e.g. efficiency

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 11

Release testing

● Final verification tests before delivery
● Usually black-box testing, relying only on

specification/requirements
● Also called acceptance testing, may involve customers/users
● In agile processes (no rigid requirements):

– Part of each cycle (e.g. Scrum)
– Performed by “product owner”
– Some documentation/”sign-off”recommended

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 12

Continuous Integration (1)

CI: agile method, collection of “best practices”

● Maintain a code repository
– Use branches sparingly

● Automate the build
– A single command (e.g. “make”) should build everything

● Make the build self-testing
– Tests should be integrated into build process

Source: https://en.wikipedia.org/wiki/Continuous_integration

https://en.wikipedia.org/wiki/Continuous_integration
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 13

Continuous Integration (2)

Often considered the most central part of CI:

● Everyone commits to mainline every day
– Keeps number of conflicts low

● Every commit to mainline should be built
– Should also be automated, e.g. with Jenkins,

Travis-CI (integrated with Github), …

Source: https://en.wikipedia.org/wiki/Continuous_integration

https://en.wikipedia.org/wiki/Continuous_integration
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 14

Continuous Integration (3)

● Keep the build fast
– Prerequisite for frequent re-builds

● Test in a clone of the production environment
– e.g. test apps on real phone, not simulator
– Separate test env. can introduce new bugs
– Use scaled-down production environment

● Make it easy to get the latest deliverables
– e.g. direct download access for customer

Source: https://en.wikipedia.org/wiki/Continuous_integration

https://en.wikipedia.org/wiki/Continuous_integration
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 15

Continuous Integration (4)

● Everyone can see results of latest build
– Build problems are fixed quickly
– Often shown by physical

indicators (see image)
● Automate deployment

– e.g. automated upload
to app store/beta testers

– “Continuous Deployment”

Image source (CC): https://en.wikipedia.org/wiki/Build_light_indicator

https://en.wikipedia.org/wiki/Build_light_indicator
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 16

DevOps

● “Development” + “Operations”
● DEV side: very similar to, e.g., Scrum
● OPS side: stronger focus on

software maintenance
● Heavy reliance on

automation tools
● Useful integration of

expertise, or just a way
to reduce personnel?

Image source (CC): https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 17

Build systems

● Compile & link
– See lecture 9

● Dependency resolution
– Internal: determine dependencies of objects, modules, source code

etc. (often via timestamps)
– External: locate/install missing libraries, tools, headers etc.

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 18

Build systems (2)

● Test management
– Run test suites after (each?) successful compilation
– Provide overview of succeeded/failed tests, test coverage

● Install products – e.g. …
– Copy to suitable filesystem locations
– Create archives/packages
– Upload to app store

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 19

(Meta-)build systems: examples

● Make
● Autotools/CMake
● Ant/Maven/Gradle
● Eclipse/Xcode/Visual Studio

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 20

Make

● Ancient in computing terms – created 1976
● Somewhat obscure syntax (“Makefile”)
● Only deals with internal dependencies
● Can be extended using external tools/scripts

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 21

Autotools

● Makefile generator
● Widely used in open-source projects
● Only available for Unix-like environments
● Consists of multiple sub-tools (automake, autoconf, configure)

which create a Makefile
● Also deals with external dependencies
● Very powerful, but also very obtuse

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 22

CMake

● More modern replacement for autotools
● Also generates Makefile or Visual Studio XML
● Cross-platform (Windows, Linux, MacOS)
● Mostly a standalone scripting language

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 24

Ant/Maven/Gradle

● Standalone build systems
● Focused on Java projects
● XML-based (Ant/Maven) or JSON-based (Gradle) project

description files
● Cross-platform (Windows, Linux, MacOS)
● Often used for Android projects (esp. Gradle)

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 25

Eclipse/Xcode/Visual Studio

● Integrated Development Environments (IDEs)
● Build system, editor, RCS frontend, test manager,

UML tools, …
● Support multiple languages (usually at least Java/C++)
● Typical examples of CASE tools (Computer Aided Software

Engineering)

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 26

Build systems: Summary

● Once again: one size does not fit all
● Build system can add lots of complexity
● Try to avoid “feature creep”
● Most open-source projects focus on CMake (C, C++) or

Ant/Maven (Java)

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 27

Questions/Comments?

● Thanks for listening!

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27

