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Today's topics

● Software quality metrics
● “Code smells”
● Antipatterns

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Software quality attributes

● Safety, Security
● Reliability, Resilience, Robustness
● Understandability, Learnability, Usability
● Reusability, Adaptability, Portability
● Modularity, Complexity, Maintainability
● Efficiency, Testability

Source (FU): Sommerville, Software Engineering, Chapter 24

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Code quality metrics

● Functional quality:
– Compliance to functional requirements/ specifications
– Usually determined by automated tests (= dynamic analysis)

● Structural quality
– Compliance to non-functional requirements (robustness, 

maintainability)
– Determined by “lint” checkers, code review (= static analysis)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Management issues

● "You can't manage it if you can't measure it."

 → overuse of metrics

 → metrics-based incentives
● May lead to results which fit the metrics but are not actually 

better

Source (FU): http://blog.codinghorror.com/a-visit-from-the-metrics-maid/

http://blog.codinghorror.com/a-visit-from-the-metrics-maid/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Metrics: basics

● Simple metric: source lines of code (SLOC)
● "Measuring software productivity by lines of code is like 

measuring progress on an airplane by how much it weighs." - 
Bill Gates

● Useful as base for other metrics
● “Raw” SLOC include whitespace, comments, …
● Often replaced by logical lines of code                                            

(LLOC = 1 statement per line)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Useful metrics

● Bugs per 1000 LOC (= kLOC)
● Fan-in/fan-out
● Code (test) coverage
● Cyclomatic complexity

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Bugs per kLOC

● NASA Software Assurance Technology Center: 0.1 bugs per 
kLOC (not applicable for everyday use)

● Open-source software (45 projects, 37 million lines of code): 
0.45 bugs per kLOC

● Commercial software (41 projects, 300 million lines of code): 
0.64 bugs per kLOC

● Note: code size of commercial projects larger by factor ~ 10

Source (FU): Coverity, Open Source Integrity Report 2012

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Fan-In/Fan-Out

● Fan-In for method X: number of functions/                               
methods that call X

● Fan-Out for method X: number of functions/                      
methods called by X

● High fan-in  changes to X may cause extensive               →
secondary changes

● High fan-out  X may be overly complex→

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Code coverage

● Hybrid of static and dynamic metrics
● Relates to unit/component/system tests
● Different variants (in increasing order of complexity): tests 

cover percentage of …
– Functions (called at least once)
– Statements (executed at least once)
– Branches (executed at least once)
– Conditions (evaluated as true and false)
– Execution paths (executed at least once)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cyclomatic complexity

1: void func(int a) {

2:   for (int i = 0; i < a; i++) {

3:     process(i);

4:   }

5:   if (a == 42) {

6:     answer();

7:   }

8:   cleanup();

9: }

Image source (PD): https://en.wikipedia.org/wiki/Cyclomatic_complexity
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https://en.wikipedia.org/wiki/Cyclomatic_complexity
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Cyclomatic complexity

● Number of linearly independent paths 
through code

● Can be calculated from control flow graph
● Complexity M = E – N + 2P (edges E, nodes 

N, graph components P)
● Example: M = 9 – 8 + 2*1 = 3
● Rule-of-thumb: split a module if M > ~ 10

Image source (PD): https://en.wikipedia.org/wiki/Cyclomatic_complexity

loop

condition

https://en.wikipedia.org/wiki/Cyclomatic_complexity
http://creativecommons.org/licenses/by-nc-sa/4.0/
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“Code smells”

● Syntactically and functionally correct code
● However: “smells” indicate structural problems
● May lead to future bugs/maintenance issues
● Also known as “lint”, “fuzz”
● (Partial) purpose of compiler warnings, e.g.                                    

“-Wall” switch in gcc (= enable all warnings)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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“Code smells” - Examples

● General impact on readability/ understandability:
– Unused variables/code (also increase binary size)
– Long method (longer than ~ 50 SLOC/1 screen)
– Excessive use of literals instead of named constants                          

(so-called “magic values”)
– Depth of conditional nesting

http://creativecommons.org/licenses/by-nc-sa/4.0/
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“Code smells” - Examples (2)

● General impact on readability/ understandability:
– Excessively short identifiers:                                                                   
int a,b,c,e,x;

– Excessively long identifiers:                                                                        
for (int loopVariable = 0; loopVariable <        
 loopMaximum; loopVariable++) { … }

– Lack/overuse of comments:                                                                             
int x = 0; // set integer variable x to zero

http://creativecommons.org/licenses/by-nc-sa/4.0/
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“Code smells” - Examples (3)

● Impact on code maintenance:
– Duplicated code:                                                                                                
a; b; c; … a; b; c;

– Redundant code:                                                                                                   
if (x) { … if (x) { … } … }

– Empty statements:                                                                                            
if (…) { }

– Side effects in conditions:                                                                                 
if (a = b) { … } instead of if (a == b) { … }

http://creativecommons.org/licenses/by-nc-sa/4.0/
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“Code smells” - Examples (4)

● Too many parameters (more than ~5)
– related to maximum number of items in human short-term memory 

= 7 ± 2
● Too many local variables in method
● Too many member variables in class
● Overly large class (also known as God Object)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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OOP “Code smells”

● Excessively deep inheritance structure
● “Feature envy”: excessive use of another class

– May happen intentionally in some patterns (which?)
● Violation of substitution principle by method overriding: 

subclass can no longer replace BC
● Contrived complexity: overuse of patterns/ templates etc.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Diamond Problem

● Multiple inheritance with shared base 
class (C++ only)

● Assume overridden method draw in 
Label and Button

● If draw is called in TextButton: is it 
Label::draw or Button::draw?

● Solvable, but may point to overly 
complex design

Source (PD): https://en.wikipedia.org/wiki/Multiple_inheritance

Widget

Label Button

TextButton

https://en.wikipedia.org/wiki/Multiple_inheritance
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Law of Demeter

● Goal: decrease coupling between components
● “Only talk to your direct friends.”  call only … →

– Methods of class itself
– … of parameter objects
– … of objects in instance variables
– … of objects created by class

● When disregarded: requires knowledge about internals of 
other classes 

Source (CC): https://en.wikipedia.org/wiki/Law_of_Demeter 

https://en.wikipedia.org/wiki/Law_of_Demeter
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Law of Demeter (2)

class Motor {
  public void start() { … }
}

class Car {
  public Motor motor;
  public Car() {
    motor = new Motor();
  }
}

class Driver {
  public void drive() {
    Car carToDrive = new Car();
    carToDrive.motor.start(); 
  }
}

Source (CC): https://en.wikipedia.org/wiki/Law_of_Demeter 

class Motor {
  public void start() { … }
}

class Car {
  private Motor motor;
  public Car() {
    motor = new Motor();
  }
  public void getReady() {
    motor.start();
  }
}

class Driver {
  public void drive() {
    Car carToDrive = new Car();
    carToDrive.getReady();
  }
}

In Java  “Use only one dot.”→

https://en.wikipedia.org/wiki/Law_of_Demeter
http://creativecommons.org/licenses/by-nc-sa/4.0/
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AntiPatterns

● Similar to design patterns: simple and widely used solutions to 
common problems … 

● … which cause other issues down the road.
● http://c2.com/cgi/wiki?AntiPatternsCatalog

– StringWithoutLength
– ParsingHTMLWithRegex
– ZeroMeansNull
– FloatingPointCurrency
– ExceptionFunnel

http://c2.com/cgi/wiki?AntiPatternsCatalog
http://creativecommons.org/licenses/by-nc-sa/4.0/
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StringWithoutLength

● Store a string without explicit length
● Use “marker” (NULL byte) instead
● Unfortunately embedded in C Standard Library
● Often also used for other types of arrays
● Requires constant recalculation of length (e.g. for copy, 

concatenation, …)
● “Proper” solution: store length as separate int (e.g. in 

std::string)

Source (FU): http://c2.com/cgi/wiki?StringWithoutLength

http://c2.com/cgi/wiki?StringWithoutLength
http://creativecommons.org/licenses/by-nc-sa/4.0/
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ParsingHTMLWithRegex

● Goal: extract information from web page
● Use regular expressions to extract data from HTML
● Will usually break if page is changed at all
● Parsed result may still contain HTML tags
● “Proper” solution:

– Use a dedicated data source
– If not possible: use an XML parser

Source (FU): http://c2.com/cgi/wiki?ParsingHtmlWithRegex

http://c2.com/cgi/wiki?ParsingHtmlWithRegex
http://creativecommons.org/licenses/by-nc-sa/4.0/
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ZeroMeansNull

● Goal: implement an optional field
● Use 0 (zero) to represent NULL (empty)

 → Field can never be actually set to zero
● Variants: use string “NULL” (there are people who have that 

name), use value -1 (may lead to overflow errors), … 
● “Proper” solution:

– Use additional boolean flag
– Use pointer to data object

Source (FU): http://c2.com/cgi/wiki?ZeroMeansNull

http://c2.com/cgi/wiki?ZeroMeansNull
http://creativecommons.org/licenses/by-nc-sa/4.0/
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FloatingPointCurrency

● Goal: store an amount of money
● Use a float (or double), e.g. 1.23f = 1 € 23 cents
● Problem: decimal fractions can not be 100% accurately 

represented in a float/double

 → Rounding errors can accumulate over time
● “Proper” solution:

– Use fixed-point math
– Use separate integers

Source (FU): http://wiki.c2.com/?FloatingPointCurrency

http://wiki.c2.com/?FloatingPointCurrency
http://creativecommons.org/licenses/by-nc-sa/4.0/
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ExceptionFunnel

● Goal: handle errors, but don’t confuse users
● Few catch-all blocks that may even throw exceptions away 

(“catch(Exception e){}”)

● Problems:
– No useful debug output at all
– Errors may go unhandled, cause issues later

● “Proper” solution:
– Use descriptive exceptions
– Catch and handle them separately

Source (FU): http://wiki.c2.com/?ExceptionFunnel

http://wiki.c2.com/?ExceptionFunnel
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Questions/Comments?

http://creativecommons.org/licenses/by-nc-sa/4.0/
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