
Software Engineering

Lecture 08 – Code Quality

© 2015-20 Dr. Florian Echtler
Bauhaus-Universität Weimar

 <florian.echtler@uni-weimar.de>

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

mailto:florian.echtler@uni-weimar.de
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 2

Today's topics

● Software quality metrics
● “Code smells”
● Antipatterns

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 3

Software quality attributes

● Safety, Security
● Reliability, Resilience, Robustness
● Understandability, Learnability, Usability
● Reusability, Adaptability, Portability
● Modularity, Complexity, Maintainability
● Efficiency, Testability

Source (FU): Sommerville, Software Engineering, Chapter 24

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

Code quality metrics

● Functional quality:
– Compliance to functional requirements/ specifications
– Usually determined by automated tests (= dynamic analysis)

● Structural quality
– Compliance to non-functional requirements (robustness,

maintainability)
– Determined by “lint” checkers, code review (= static analysis)

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 5

Management issues

● "You can't manage it if you can't measure it."

 → overuse of metrics

 → metrics-based incentives
● May lead to results which fit the metrics but are not actually

better

Source (FU): http://blog.codinghorror.com/a-visit-from-the-metrics-maid/

http://blog.codinghorror.com/a-visit-from-the-metrics-maid/
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 6

Metrics: basics

● Simple metric: source lines of code (SLOC)
● "Measuring software productivity by lines of code is like

measuring progress on an airplane by how much it weighs." -
Bill Gates

● Useful as base for other metrics
● “Raw” SLOC include whitespace, comments, …
● Often replaced by logical lines of code

(LLOC = 1 statement per line)

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 7

Useful metrics

● Bugs per 1000 LOC (= kLOC)
● Fan-in/fan-out
● Code (test) coverage
● Cyclomatic complexity

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 8

Bugs per kLOC

● NASA Software Assurance Technology Center: 0.1 bugs per
kLOC (not applicable for everyday use)

● Open-source software (45 projects, 37 million lines of code):
0.45 bugs per kLOC

● Commercial software (41 projects, 300 million lines of code):
0.64 bugs per kLOC

● Note: code size of commercial projects larger by factor ~ 10

Source (FU): Coverity, Open Source Integrity Report 2012

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 9

Fan-In/Fan-Out

● Fan-In for method X: number of functions/
methods that call X

● Fan-Out for method X: number of functions/
methods called by X

● High fan-in changes to X may cause extensive →
secondary changes

● High fan-out X may be overly complex→

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 10

Code coverage

● Hybrid of static and dynamic metrics
● Relates to unit/component/system tests
● Different variants (in increasing order of complexity): tests

cover percentage of …
– Functions (called at least once)
– Statements (executed at least once)
– Branches (executed at least once)
– Conditions (evaluated as true and false)
– Execution paths (executed at least once)

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 11

Cyclomatic complexity

1: void func(int a) {

2: for (int i = 0; i < a; i++) {

3: process(i);

4: }

5: if (a == 42) {

6: answer();

7: }

8: cleanup();

9: }

Image source (PD): https://en.wikipedia.org/wiki/Cyclomatic_complexity

loop

condition

3

2a

2b

 1

5

6

8

9

https://en.wikipedia.org/wiki/Cyclomatic_complexity
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 12

Cyclomatic complexity

● Number of linearly independent paths
through code

● Can be calculated from control flow graph
● Complexity M = E – N + 2P (edges E, nodes

N, graph components P)
● Example: M = 9 – 8 + 2*1 = 3
● Rule-of-thumb: split a module if M > ~ 10

Image source (PD): https://en.wikipedia.org/wiki/Cyclomatic_complexity

loop

condition

https://en.wikipedia.org/wiki/Cyclomatic_complexity
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 13

“Code smells”

● Syntactically and functionally correct code
● However: “smells” indicate structural problems
● May lead to future bugs/maintenance issues
● Also known as “lint”, “fuzz”
● (Partial) purpose of compiler warnings, e.g.

“-Wall” switch in gcc (= enable all warnings)

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 14

“Code smells” - Examples

● General impact on readability/ understandability:
– Unused variables/code (also increase binary size)
– Long method (longer than ~ 50 SLOC/1 screen)
– Excessive use of literals instead of named constants

(so-called “magic values”)
– Depth of conditional nesting

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 15

“Code smells” - Examples (2)

● General impact on readability/ understandability:
– Excessively short identifiers:
int a,b,c,e,x;

– Excessively long identifiers:
for (int loopVariable = 0; loopVariable <
 loopMaximum; loopVariable++) { … }

– Lack/overuse of comments:
int x = 0; // set integer variable x to zero

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 16

“Code smells” - Examples (3)

● Impact on code maintenance:
– Duplicated code:
a; b; c; … a; b; c;

– Redundant code:
if (x) { … if (x) { … } … }

– Empty statements:
if (…) { }

– Side effects in conditions:
if (a = b) { … } instead of if (a == b) { … }

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 17

“Code smells” - Examples (4)

● Too many parameters (more than ~5)
– related to maximum number of items in human short-term memory

= 7 ± 2
● Too many local variables in method
● Too many member variables in class
● Overly large class (also known as God Object)

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 18

OOP “Code smells”

● Excessively deep inheritance structure
● “Feature envy”: excessive use of another class

– May happen intentionally in some patterns (which?)
● Violation of substitution principle by method overriding:

subclass can no longer replace BC
● Contrived complexity: overuse of patterns/ templates etc.

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 19

Diamond Problem

● Multiple inheritance with shared base
class (C++ only)

● Assume overridden method draw in
Label and Button

● If draw is called in TextButton: is it
Label::draw or Button::draw?

● Solvable, but may point to overly
complex design

Source (PD): https://en.wikipedia.org/wiki/Multiple_inheritance

Widget

Label Button

TextButton

https://en.wikipedia.org/wiki/Multiple_inheritance
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 20

Law of Demeter

● Goal: decrease coupling between components
● “Only talk to your direct friends.” call only … →

– Methods of class itself
– … of parameter objects
– … of objects in instance variables
– … of objects created by class

● When disregarded: requires knowledge about internals of
other classes

Source (CC): https://en.wikipedia.org/wiki/Law_of_Demeter

https://en.wikipedia.org/wiki/Law_of_Demeter
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 21

Law of Demeter (2)

class Motor {
 public void start() { … }
}

class Car {
 public Motor motor;
 public Car() {
 motor = new Motor();
 }
}

class Driver {
 public void drive() {
 Car carToDrive = new Car();
 carToDrive.motor.start();
 }
}

Source (CC): https://en.wikipedia.org/wiki/Law_of_Demeter

class Motor {
 public void start() { … }
}

class Car {
 private Motor motor;
 public Car() {
 motor = new Motor();
 }
 public void getReady() {
 motor.start();
 }
}

class Driver {
 public void drive() {
 Car carToDrive = new Car();
 carToDrive.getReady();
 }
}

In Java “Use only one dot.”→

https://en.wikipedia.org/wiki/Law_of_Demeter
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 22

AntiPatterns

● Similar to design patterns: simple and widely used solutions to
common problems …

● … which cause other issues down the road.
● http://c2.com/cgi/wiki?AntiPatternsCatalog

– StringWithoutLength
– ParsingHTMLWithRegex
– ZeroMeansNull
– FloatingPointCurrency
– ExceptionFunnel

http://c2.com/cgi/wiki?AntiPatternsCatalog
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 23

StringWithoutLength

● Store a string without explicit length
● Use “marker” (NULL byte) instead
● Unfortunately embedded in C Standard Library
● Often also used for other types of arrays
● Requires constant recalculation of length (e.g. for copy,

concatenation, …)
● “Proper” solution: store length as separate int (e.g. in

std::string)

Source (FU): http://c2.com/cgi/wiki?StringWithoutLength

http://c2.com/cgi/wiki?StringWithoutLength
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 24

ParsingHTMLWithRegex

● Goal: extract information from web page
● Use regular expressions to extract data from HTML
● Will usually break if page is changed at all
● Parsed result may still contain HTML tags
● “Proper” solution:

– Use a dedicated data source
– If not possible: use an XML parser

Source (FU): http://c2.com/cgi/wiki?ParsingHtmlWithRegex

http://c2.com/cgi/wiki?ParsingHtmlWithRegex
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 25

ZeroMeansNull

● Goal: implement an optional field
● Use 0 (zero) to represent NULL (empty)

 → Field can never be actually set to zero
● Variants: use string “NULL” (there are people who have that

name), use value -1 (may lead to overflow errors), …
● “Proper” solution:

– Use additional boolean flag
– Use pointer to data object

Source (FU): http://c2.com/cgi/wiki?ZeroMeansNull

http://c2.com/cgi/wiki?ZeroMeansNull
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 26

FloatingPointCurrency

● Goal: store an amount of money
● Use a float (or double), e.g. 1.23f = 1 € 23 cents
● Problem: decimal fractions can not be 100% accurately

represented in a float/double

 → Rounding errors can accumulate over time
● “Proper” solution:

– Use fixed-point math
– Use separate integers

Source (FU): http://wiki.c2.com/?FloatingPointCurrency

http://wiki.c2.com/?FloatingPointCurrency
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 27

ExceptionFunnel

● Goal: handle errors, but don’t confuse users
● Few catch-all blocks that may even throw exceptions away

(“catch(Exception e){}”)

● Problems:
– No useful debug output at all
– Errors may go unhandled, cause issues later

● “Proper” solution:
– Use descriptive exceptions
– Catch and handle them separately

Source (FU): http://wiki.c2.com/?ExceptionFunnel

http://wiki.c2.com/?ExceptionFunnel
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 28

Questions/Comments?

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

