
Software Engineering

Lecture 05 – Agile Methods

© 2015-20 Dr. Florian Echtler
Bauhaus-Universität Weimar

 <florian.echtler@uni-weimar.de>

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

mailto:florian.echtler@uni-weimar.de
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 2

General problems with IT projects

● On average, large IT projects (> $15 million):
– 45 % over budget
– 7 % over time
– 56 % less value than predicted

● 17 % of large projects fail so spectacularly as to threaten
company survival

Source (FU): McKinsey, 2012, http://www.mckinsey.com/...IT_projects_on_time_budget_and_value.ashx

http://www.mckinsey.com/~/media/McKinsey/dotcom/client_service/BTO/PDF/MOBT_27_Delivering_large-scale_IT_projects_on_time_budget_and_value.ashx
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 3

Plan-driven methods: Problems

● Emerged in 1960s from other engineering disciplines
● Business cycles getting ever faster

 → requirements change quickly

 → plan-driven methods require rework
● For small projects: massive overhead

 → often more management than development

● → starting in 1990s: shift to agile methods

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

The Agile Manifesto

“We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.”

Source (FU): Kent Beck et al., 2001, http://agilemanifesto.org/

http://agilemanifesto.org/
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 5

Popularity of agile methods
Image source (FU): Prof. Dr. Komus, HS Koblenz, Studie Status Quo Agile 2014

Estimate your success quota for projects conducted with agile methods:

agile selectivehybrid

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 6

Key aspects of agile models

● Interleaving of activities
– Specification, design and implementation interleaved/concurrent

● Incremental development
– Regular releases with customer involvement

● Prototyping tools
– e.g. user interfaces quickly built with visual editors

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 7

Incremental Development
Image source (CC): https://en.wikipedia.org/wiki/Incremental_build_model

https://en.wikipedia.org/wiki/Incremental_build_model
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 8

Key agile principles

● Customer involvement throughout the development process
● Incremental delivery based on customer's priorities
● People, not process: leave the development team to their own

self-organizing ways
● Embrace change: expect requirements to change from the start
● Maintain simplicity by constant refactoring

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 9

Possible issues with agile methods

● Strong commitment & background knowledge (also in IT)
from customer required

● Conflicting priorities from many stakeholders
● Team members' personalities?
● Cultural conflict with processes/contracts in large companies

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 10

Possible issues with agile (2)

● Constant refactoring means extra work
 often neglected under time pressure→

● Team members often change after each cycle
 less stable environment→

● Maintenance more difficult due to lack of
documentation/original team

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 11

Things to consider

Best for... Agile Plan-driven

Development team small, co-located,
highly skilled

large, distributed,
lower (average) skill

System size small, monolithic large, distributed

Regulation compliance or
formal analysis needed?

no yes

System lifetime
and iterations

short/many long/few

Organization small startup large corporation

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 12

Agile Methods

● Extreme Programming [Beck1999]
● Scrum [Schwaber/Beedle2001]
● Feature Driven Development [DeLuca1997]

http://www.nebulon.com/
● (Open) Kanban [Hurtado2013]

http://agilelion.com/agile-kanban-cafe/open-kanban

http://www.nebulon.com/
http://agilelion.com/agile-kanban-cafe/open-kanban
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 13

Extreme Programming (XP)

● Focused on development aspects
● Key components:

– User stories define requirements
– Pair programming, test-first development
– Multiple new builds/versions per day
– All tests must pass before integration
– New releases delivered every ~ 2 weeks
– No delays, remove features if necessary

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 14

XP: Planning & Design

● Incremental planning
– Requirements based on “user stories”
– Select stories for each release based on available time & priority

● Simple design
– Only design for the current requirements

● On-site customer
– Customer representative as full-time team member

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 15

XP: Planning & Design (2)

● Conventional wisdom in SE: “design for change”
 anticipating changes → now saves time and effort later

● XP perspective: changes cannot be reliably anticipated,
leads to unnecessary effort for generalization

 → constant code improvement/refactoring

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 16

XP: User Stories

● Sample user story: Prescribing medication
Kate is a doctor who wishes to prescribe medication for a patient attending a clinic. The
patient record is already displayed on her computer, so she clicks on the medication field and
can select “current medication”, “new medication” or “formulary”.

If she selects “current medication”, the system asks her to check the dose. If she wants to
change the dose, she enters the new value and then confirms the prescription.

[…]

The system always checks that the dose is within the approved range. If it isn't, Kate is asked
to change the dose.

After Kate has confirmed the prescription, it will be displayed for checking. She either clicks
'OK' or 'Change'. If she clicks 'OK', the prescription is recorded on the audit database. If she
clicks on 'Change', she reenters the 'Prescribing Medication' process.

Source (FU): Sommerville, Software Engineering, Chapter 3

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 17

XP: User Stories (2)

● User stories broken down into tasks
– Task 1: Change dose of prescribed drug [...]
– Task 2: Formulary selection [...]
– Task 3: Dose checking

Dose checking is a safety precaution to check that the doctor has not prescribed a
dangerously small or large dose.

Using the formulary ID for the generic drug name, look up the formulary and retrieve the
recommended maximum and minimum dose.

Check the prescribed dose against the minimum and maximum. If outside the range, issue
an error message saying that the dose is too high or too low. If within the range, enable
the 'Confirm' button.

Source (FU): Sommerville, Software Engineering, Chapter 3

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 18

XP: Development

● Pair programming
– Two people on one workstation
– Provides instant code review

● Constant refactoring, e.g.
– Rename methods/classes with descriptive names
– Move long code section to separate method

● Collective ownership
– All developers work on all system components
– No “islands of expertise”

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 19

XP: Development (2)

● Test-first development
– Automated unit tests
– Written before the code itself

● Continuous integration
– Task completed integrate into whole system→
– Whole build, all tests must still pass

● Sustainable pace
– Significant overtime not acceptable
– Reduces code quality and long-term performance

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 20

XP: Testing

● Incremental development

 → no clear/fixed specification

 → no external testing team possible
● Tests created by developers before the code

 → implicitly defines interface & spec.

 → avoids test lag
● Tests built on tasks from user stories
● Customer involvement through test cases

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 21

XP: Testing - Example

● Test: Dose Checking
– Input:

● A number in mg representing a single dose of the drug.
● A number representing the number of doses per day.

– Tests:
● Input where single dose is correct but freq. too high.
● Input where single dose is too high or too low.
● Input where single dose * freq. is too high or too low.
● Input where single dose * freq. is in permitted range.

– Output:
● OK or error message that dose is outside of safe range.

Source (FU): Sommerville, Software Engineering, Chapter 3

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 22

XP: Testing – possible issues

● Code coverage
– Developers may skip certain test cases
– Refactoring can cause classes to be missed

● “Incremental testing”
– Interaction between classes difficult to test
– Even 100% unit test coverage can't catch all bugs

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 23

XP: Pair Programming

● Two developers on one workstation
– Supports collective ownership/responsibility,

“egoless programming”
– Informal review process: each line of code is looked at

by at least 2 persons
● Total productivity comparable to 2 persons working alone:

continuous discussion →
– Implicit knowledge sharing
– Fewer false starts/mistakes

● However: depends on individual personality!

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 24

Scrum

● Focused on management aspects
● Definition – British (informal), orig. from Rugby:

– a disorderly crowd of people or things.
"there was quite a scrum of people at the bar"

● Designed to enable management of iterative development
processes (contradiction!)

● 3 phases:
– Outline – general objectives, architecture
– Sprint cycles – develop one release per cycle
– Project closure – wrap-up & documentation

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 25

Scrum

Assess Select

Review Develop

Initial planning
and design Project closure

“Sprint cycle”

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 26

Scrum

● Sprint cycle (~ 2 weeks = one release in XP)
– Assess product backlog (work to be done)
– Select features/functionality (with customer)
– Develop release (team isolation by Scrum master)
– Review and present to stakeholders

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 27

Scrum Master/Meetings

● Facilitator – main tasks:
– Arrange daily stand-up meetings (~ 15 min.)
– Track backlog/work to be done
– Record decisions
– Communicate with customers/upper management

● Daily meetings
– Everyone briefly describes progress/problems/ plan for the day
– Everyone knows about project state

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 28

Image source (CC): https://en.wikipedia.org/wiki/Scrum_%28software_development%29

Scrum Board

● Often used to track
progress during sprint cycle

● Categories: ToDo, In
Progress, (Testing), Done

https://en.wikipedia.org/wiki/Scrum_%28software_development%29
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 29

Scrum: Burn-down chart
Image source (CC): https://en.wikipedia.org/wiki/Scrum_%28software_development%29

https://en.wikipedia.org/wiki/Scrum_%28software_development%29
http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 30

Scaling agile methods up

● Scaling up: agile methods for large systems
– Consist of separate, communicating subsystems
– Include/interact with other existing systems
– Have to follow regulations (e.g. aircraft)
– Long procurement/development/deployment time
– Multiple stakeholders

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 31

Scaling agile methods up (2)

● Agile adaption requires …
– Multiple teams (too large for single small team)
– At least some up-front architecture design
– Communication mechanisms between teams

(e.g. Wikis, video calls, group chat, …)
– More detailed documentation
– Continuous integration perhaps not possible due to build duration

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 32

Scaling agile methods out

● Scaling out: agile methods in large companies
● Needs to deal with …

– Reluctance in upper management
– Incompatible with bureaucratic procedures/regulations
– Wide range of skill levels in teams
– Cultural resistance

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 33

Summary

● Both plan-driven and agile have merits
● Textbook examples are unlikely to work in reality

without adaptation

Remember: one size does not fit all.

http://creativecommons.org/licenses/by-nc-sa/4.0/

19/05/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 34

Questions/suggestions?

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34

