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UML & Testing

● UML/Modelling (Recap)
● (Unit) Testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
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UML/Modelling (Recap)

● UML: Unified Modelling Language
● Used for visualization of system design
● ISO standard since 2000 (currently v2.5)
● Multiple diagram types (14!)

– Structure diagrams
– Behaviour diagrams

● (Sometimes) used to auto-generate code

http://creativecommons.org/licenses/by-nc-sa/4.0/


20/04/20 Software Engineering -  © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

UML Diagram Types

● Tools
– Violet: http://alexdp.free.fr/violetumleditor/
– UMLet: http://www.umlet.com/
– ArgoUML: http://argouml.tigris.org/

● 5 most common diagram types [ES2007]:
– Structure: Class
– Behaviour: Sequence, Use case, State, Activity

● Common to all diagram types: comments

http://alexdp.free.fr/violetumleditor/
http://www.umlet.com/
http://argouml.tigris.org/
https://dl.acm.org/citation.cfm?id=1278205
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Class Diagram (1)

+ = public
# = protected
 - = private

italic = abstract
underline = static

● Show properties of classes
– Methods, attributes, visibility, scope

generics
parameter(s)

class name

attributes

methods

Window

+ size: Area
# visibility: Boolean = b
- window: Pointer

+ display()
+ show()
+ hide()

b: Boolean

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Class Diagram (2)

● Show relations between classes
– Inheritance, implementation, …

Image source (CC): https://en.wikipedia.org/wiki/Class_diagram 

MoneyStorage

Inheritance (“is a”)

BankAccount Wallet

<<interface>>
IWalletWallet

implementation
Owner

usage

Interface (“implements”)

superclass

subclass

https://en.wikipedia.org/wiki/Class_diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Class Diagram (3)

● Shows relations between classes:                                        
Composition, Associations, Multiplicity, …

Composition (“contains”,
is destroyed with container)

Aggregation (“has”,
can exist separately)

Image source (CC): https://en.wikipedia.org/wiki/Class_diagram 

Car Motor
  1                          1...2

Pond Duck
  1                          0...*

“1 Car contains 1-2 Motors” “1 Pond has arbitrary # of Ducks”

NonProfit Donor
*                                          *

Donation

Amount:money

“Every Donor gives to arbitrary # of 
NonProfits, each NonProfit has 
arbitrary # of Donors, and each 
Donation has an individual Amount.”

https://en.wikipedia.org/wiki/Class_diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Use Case Diagram

● Contains actors and actions
● Useful for communication 

with customers
● Mimics real world
● Less focus on system 

internals

Image source (CC):  https://en.wikipedia.org/wiki/Use_Case_Diagram 

https://en.wikipedia.org/wiki/Use_Case_Diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Sequence Diagram

● Shows objects, lifelines and messages
● Illustrates … 

– runtime behavior
– object lifetimes
– (a)synchronous calls

Image source (CC):  https://en.wikipedia.org/wiki/Sequence_diagram

download

https://en.wikipedia.org/wiki/Sequence_diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/


20/04/20 Software Engineering -  © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 10

State Diagram

● Contains states and transistions
● Transitions represent external events
● Start transition shows initial state

Image source (CC):  https://commons.wikimedia.org/wiki/File:UML_State_diagram.svg 

Simulator stopped Simulator running Simulator paused

[Start]

[Stop]

[Pause]

[Continue]

Retrieve log data

[Request log]

[Continue]

https://commons.wikimedia.org/wiki/File:UML_State_diagram.svg
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Activity Diagram

● Shows actions, decisions 
and concurrency (black 
bars)

● Similar to flowchart

Image source (CC):  https://en.wikipedia.org/wiki/Activity_diagram

https://en.wikipedia.org/wiki/Activity_diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/
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UML best practices

● Use for communication/documentation
● Try to keep diagrams small
● Code generation can be helpful … 
● … but usually only for “boilerplate” code  (class structure etc.)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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UML: alternatives?

● If UML not strictly required: consider simpler “box-and-line” 
diagrams

● Most whiteboard sketches                                                                      
fall into this category :-)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Testing

● Abstract: process test cases, check results
● However: tests can only show presence of errors, not absence.

Input
test

cases

I
e

Output
test

results

O
e

System
Inputs causing
anomalous
behaviour

Outputs revealing
presence of defects

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Testing (2)

● Validation testing
– Show that software meets requirements
– Test cases modelled after typical use cases 

● Defect testing 
– Obvious goal: find bugs/errors/design flaws!
– Test cases contain atypical/erroneous data

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Testing (3)

● Testing is possible at many levels/stages
● Development testing

– unit testing
– component testing
– system testing

● Release testing
● Performance testing
● User testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Development Testing

● Performed iteratively during development
● Mostly performed by developers themselves (“white-box 

testing”)
● Independent test developers also possible (“black-box testing”)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Unit Testing

● Core idea: test each unit of source code individually, e.g. each 
class

● Goal: test all methods, attributes, states
● Often requires mock objects/test harnesses to simulate missing 

system components
● Testing all states may require internal knowledge of the class – 

problem with black box testing

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Component/System Testing

● Test building blocks consisting of multiple units/classes         
(or sub-blocks), also called integration tests

● Focus on interface between sub-units

● Possible types of interface error:

– Interface misuse, e.g. parameters in wrong order
– Interface misunderstanding – incorrect assumptions about 

behaviour of callee, e.g. passing unsorted array to binary search
– Timing errors – components operate at different speeds  out-of-→ out-of-

date information is accessed

“mystery booleans”

http://creativecommons.org/licenses/by-nc-sa/4.0/
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“2 Unit Tests, 0 Integration Tests”
Image source (FU): https://www.reddit.com/r/ProgrammerHumor
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Testing automation

● Tests should (usually) be automated
● e.g. run tests directly after RCS commit
● Test frameworks provide structural support
● 3 phases:

– Setup – initialize object/environment
– Call – execute method
– Assertion – check results

● Often grouped in test suites

https://www.reddit.com/r/ProgrammerHumor
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Testing: best practices

● Use a test framework (JUnit, CPPUnit, …)
● Automate your tests
● Combine with RCS

– Commit/push hooks to trigger tests
– Bisection to find errors in large changesets 

● Use “extreme” test cases, e.g. NULL, NaN, -0, INT_MAX,   
empty set, …

● If at all possible: write tests first!

scripts executed after
RCS operations

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Testing: best practices (2)

● Bisection: binary search in revision history
– Identify initial “good” and “bad” commit
– Test the one halfway between good and bad
– Repeat until only one commit left

● Works best with small commits
● Example: 4th test identifies commit with error

+ -

Test passes Test fails

+
1.

-
2.

+
3.

-
4.

revision 
history

http://creativecommons.org/licenses/by-nc-sa/4.0/
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General best practices: Teamwork

● Follow the coding style guide
– Use a tool like indent

● Use team tools
– RCS
– Issue tracker
– Discussion forums

● Never, ever send code by e-mail.
● Never, ever share code via remote folders.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Questions/suggestions?

http://creativecommons.org/licenses/by-nc-sa/4.0/
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