
Software Engineering

Lecture 03 – UML & Testing

© 2015-20 Dr. Florian Echtler
Bauhaus-Universität Weimar

 <florian.echtler@uni-weimar.de>

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

mailto:florian.echtler@uni-weimar.de
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 2

UML & Testing

● UML/Modelling (Recap)
● (Unit) Testing

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 3

UML/Modelling (Recap)

● UML: Unified Modelling Language
● Used for visualization of system design
● ISO standard since 2000 (currently v2.5)
● Multiple diagram types (14!)

– Structure diagrams
– Behaviour diagrams

● (Sometimes) used to auto-generate code

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

UML Diagram Types

● Tools
– Violet: http://alexdp.free.fr/violetumleditor/
– UMLet: http://www.umlet.com/
– ArgoUML: http://argouml.tigris.org/

● 5 most common diagram types [ES2007]:
– Structure: Class
– Behaviour: Sequence, Use case, State, Activity

● Common to all diagram types: comments

http://alexdp.free.fr/violetumleditor/
http://www.umlet.com/
http://argouml.tigris.org/
https://dl.acm.org/citation.cfm?id=1278205
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 5

Class Diagram (1)

+ = public
= protected
 - = private

italic = abstract
underline = static

● Show properties of classes
– Methods, attributes, visibility, scope

generics
parameter(s)

class name

attributes

methods

Window

+ size: Area
visibility: Boolean = b
- window: Pointer

+ display()
+ show()
+ hide()

b: Boolean

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 6

Class Diagram (2)

● Show relations between classes
– Inheritance, implementation, …

Image source (CC): https://en.wikipedia.org/wiki/Class_diagram

MoneyStorage

Inheritance (“is a”)

BankAccount Wallet

<<interface>>
IWalletWallet

implementation
Owner

usage

Interface (“implements”)

superclass

subclass

https://en.wikipedia.org/wiki/Class_diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 7

Class Diagram (3)

● Shows relations between classes:
Composition, Associations, Multiplicity, …

Composition (“contains”,
is destroyed with container)

Aggregation (“has”,
can exist separately)

Image source (CC): https://en.wikipedia.org/wiki/Class_diagram

Car Motor
 1 1...2

Pond Duck
 1 0...*

“1 Car contains 1-2 Motors” “1 Pond has arbitrary # of Ducks”

NonProfit Donor
* *

Donation

Amount:money

“Every Donor gives to arbitrary # of
NonProfits, each NonProfit has
arbitrary # of Donors, and each
Donation has an individual Amount.”

https://en.wikipedia.org/wiki/Class_diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 8

Use Case Diagram

● Contains actors and actions
● Useful for communication

with customers
● Mimics real world
● Less focus on system

internals

Image source (CC): https://en.wikipedia.org/wiki/Use_Case_Diagram

https://en.wikipedia.org/wiki/Use_Case_Diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 9

Sequence Diagram

● Shows objects, lifelines and messages
● Illustrates …

– runtime behavior
– object lifetimes
– (a)synchronous calls

Image source (CC): https://en.wikipedia.org/wiki/Sequence_diagram

download

https://en.wikipedia.org/wiki/Sequence_diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 10

State Diagram

● Contains states and transistions
● Transitions represent external events
● Start transition shows initial state

Image source (CC): https://commons.wikimedia.org/wiki/File:UML_State_diagram.svg

Simulator stopped Simulator running Simulator paused

[Start]

[Stop]

[Pause]

[Continue]

Retrieve log data

[Request log]

[Continue]

https://commons.wikimedia.org/wiki/File:UML_State_diagram.svg
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 11

Activity Diagram

● Shows actions, decisions
and concurrency (black
bars)

● Similar to flowchart

Image source (CC): https://en.wikipedia.org/wiki/Activity_diagram

https://en.wikipedia.org/wiki/Activity_diagram
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 12

UML best practices

● Use for communication/documentation
● Try to keep diagrams small
● Code generation can be helpful …
● … but usually only for “boilerplate” code (class structure etc.)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 13

UML: alternatives?

● If UML not strictly required: consider simpler “box-and-line”
diagrams

● Most whiteboard sketches
fall into this category :-)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 14

Testing

● Abstract: process test cases, check results
● However: tests can only show presence of errors, not absence.

Input
test

cases

I
e

Output
test

results

O
e

System
Inputs causing
anomalous
behaviour

Outputs revealing
presence of defects

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 15

Testing (2)

● Validation testing
– Show that software meets requirements
– Test cases modelled after typical use cases

● Defect testing
– Obvious goal: find bugs/errors/design flaws!
– Test cases contain atypical/erroneous data

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 16

Testing (3)

● Testing is possible at many levels/stages
● Development testing

– unit testing
– component testing
– system testing

● Release testing
● Performance testing
● User testing

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 17

Development Testing

● Performed iteratively during development
● Mostly performed by developers themselves (“white-box

testing”)
● Independent test developers also possible (“black-box testing”)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 18

Unit Testing

● Core idea: test each unit of source code individually, e.g. each
class

● Goal: test all methods, attributes, states
● Often requires mock objects/test harnesses to simulate missing

system components
● Testing all states may require internal knowledge of the class –

problem with black box testing

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 19

Component/System Testing

● Test building blocks consisting of multiple units/classes
(or sub-blocks), also called integration tests

● Focus on interface between sub-units

● Possible types of interface error:

– Interface misuse, e.g. parameters in wrong order
– Interface misunderstanding – incorrect assumptions about

behaviour of callee, e.g. passing unsorted array to binary search
– Timing errors – components operate at different speeds out-of-→ out-of-

date information is accessed

“mystery booleans”

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 21

“2 Unit Tests, 0 Integration Tests”
Image source (FU): https://www.reddit.com/r/ProgrammerHumor

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 22

Testing automation

● Tests should (usually) be automated
● e.g. run tests directly after RCS commit
● Test frameworks provide structural support
● 3 phases:

– Setup – initialize object/environment
– Call – execute method
– Assertion – check results

● Often grouped in test suites

https://www.reddit.com/r/ProgrammerHumor
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 23

Testing: best practices

● Use a test framework (JUnit, CPPUnit, …)
● Automate your tests
● Combine with RCS

– Commit/push hooks to trigger tests
– Bisection to find errors in large changesets

● Use “extreme” test cases, e.g. NULL, NaN, -0, INT_MAX,
empty set, …

● If at all possible: write tests first!

scripts executed after
RCS operations

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 24

Testing: best practices (2)

● Bisection: binary search in revision history
– Identify initial “good” and “bad” commit
– Test the one halfway between good and bad
– Repeat until only one commit left

● Works best with small commits
● Example: 4th test identifies commit with error

+ -

Test passes Test fails

+
1.

-
2.

+
3.

-
4.

revision
history

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 25

General best practices: Teamwork

● Follow the coding style guide
– Use a tool like indent

● Use team tools
– RCS
– Issue tracker
– Discussion forums

● Never, ever send code by e-mail.
● Never, ever share code via remote folders.

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 26

Questions/suggestions?

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

