
Software Engineering

Lecture 02 – Git & OOP

© 2015-20 Dr. Florian Echtler
Bauhaus-Universität Weimar

 <florian.echtler@uni-weimar.de>

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

mailto:florian.echtler@uni-weimar.de
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 2

Revision Control

● Also known as version or source code control
● Revision control systems (RCS) maintain …

– a history of changes
– from multiple persons
– to a set of documents.

● Mostly designed for plain-text documents
(e.g. source code, LaTeX files, …)

● Extensions for binary files (e.g. images) possible

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 3

Storing history in RCS (1)

● Most RCS use numbered revisions
● Initial state of the document set is revision 1,
● First change is revision 2, second change ...

● Important: not necessarily linear
● Revisions can have multiple successors

 → overall structure is a tree (with exceptions)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

Storing history in RCS (2)

● Trunk: main development history
(often also called master)

● Branch: e.g. development of
extra features, bugfixes, …

● Tags: “bookmarks”, e.g. releases
● Merges: combination of 2 or more

branches (break pure tree structure)

Image source (CC): https://en.wikipedia.org/wiki/Revision_control

T
im

e

https://en.wikipedia.org/wiki/Revision_control
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 5

Storing history in RCS (3)

● Merges: can lead to conflicts
● e.g. what if change sets 6 and 7

edit the same file?
● What if it's the same line?

 → may require manual
intervention/rewriting

Image source (CC): https://en.wikipedia.org/wiki/Revision_control

T
im

e

https://en.wikipedia.org/wiki/Revision_control
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 6

Common RCS terms

● Repository (repo): storage for files + history (usually on a
remote server)

● Working copy: local copy of the files at a specific revision
● Common examples: CVS, Subversion (SVN)

repo-
sitory

working
copy

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 7

Common RCS operations

● checkout: create a local copy
● commit: push a set of changes to the repository (atomic

operation)
● update: integrate new changes from repo into local copy

(possibly requiring merge)

repo-
sitory

working
copy

update
commit

checkout

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 8

Distributed RCS

● multiple interconnected repositories (peer-to-peer),
no separate working copies

● e.g. Bazaar (bzr), Mercurial, git
● widely used in open-source context

reporepo

repo

repo

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 9

repo

DRCS operations

● clone: create new, complete copy of repo
● commit: save changes locally to history
● push/pull: transfer to/from remote repo

reporepo pull
push

commit

repo

clone

clone

“downstream”

“upstream”

clone

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 10

Other RCS ops: diff

● diff: view highlighted set of changes
● +/- represents added/removed lines
● optionally also with changes per word
● works best for text docs, e.g. source code

diff --git a/examples/protonect/src/libfreenect2.cpp b/examples/protonect/src/libfreenect2.cpp
index 2d4709b..42e2157 100644
--- a/examples/protonect/src/libfreenect2.cpp
+++ b/examples/protonect/src/libfreenect2.cpp
@@ -422,7 +422,8 @@ bool Freenect2DeviceImpl::open()
 if(usb_control_.setVideoTransferFunctionState(UsbControl::Disabled) != UsbControl::Success) ...

- size_t max_iso_packet_size = libusb_get_max_iso_packet_size(usb_device_, 0x84);
+ int max_iso_packet_size;
+ if(usb_control_.getIrMaxIsoPacketSize(max_iso_packet_size) != UsbControl::Success) return false;

...

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 11

RCS best practices

● Keep commits small
● Only related changes in one commit
● Use meaningful commit messages
● Only commit valid code (at least compiles)
● RCS is not a backup
● Use graphical tools (e.g. tig, gitg)

https://xkcd.com/1296/

https://xkcd.com/1296/
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 12

General best practices: Workflow

● A common git workflow with Github:
– Pull recent changes from upstream repository.
– Check for new issues.
– Create and checkout a new branch.
– Fix an issue in this branch.
– Test and commit the branch locally.
– Push the new branch to your Github repository.
– Create a pull request for the master repository.

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 13

“upstream”

General best practices: Workflow

linux

GitHub

owner: torvalds

linux

owner: you

(1) fork

(6) pull

(5) pull request

Your PC

linux
 (3) commit

(4) push (2) clone

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 14

Object-Oriented Programming

● Classes and Objects
● Encapsulation
● Inheritance and Polymorphism
● Object-Oriented Design

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 15

Classes and Objects (1)

● A class is a template with …
– Variables (placeholders for data)
– Methods (manipulators for data)

● An object is a single instance of that class
– Concrete values for variables
– Many objects of same class can coexist
– Special method (constructor) for initialization

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 16

Classes and Objects (2)
Class

A: int
B: string

static C: int

Object 1

A: 12
B: “foo”

C: 42

Object 2

A: 23
B: “bar”

C: 42

Object 3

A: 123
B: “baz”

C: 42

Class is a
template/
blueprint

Objects are
individual
instances

Normal members
have individual values
for each object; static
members have a
single shared value
across all objects of
one class.

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 17

Encapsulation (1)

● Procedural programming: global state (variables), modified
through functions

● Hard to keep track of side effects (cf. Toyota)

speed

gear

battery

rpm

accelerate()

shift()

charge()

air_temp

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 18

Encapsulation (2)

● Core idea of OOP: encapsulate related data
● Data is no longer directly accessible
● Class provides methods to manipulate data

speed

gear battery

rpm

air_temp

Car
accelerate()

shift()

charge(temp)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 19

Encapsulation (3)

● Data and methods have visibility or scope
● Common levels:

– Public: visible/accessible to everyone
– Protected: only visible to subclasses (see below)
– Package (default in Java): visible to package
– Private: only visible to other class members

● Rule of thumb: try to avoid public members (otherwise,
encapsulation is sidestepped)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 20

Inheritance

● Classes can be derived from other classes
● Superclass (parent) Subclass (child)→
● Class members are inherited from superclass
● Subclasses often introduce extra variables/methods

(specialization)

Car

Vehicle

Bike

This relation is
called “is-a”

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 21

Polymorphism

● Subclasses can overwrite behaviour
● Method with same signature as in superclass

– Signature = name + parameter types
– Actual runtime behaviour depends on subclass

● e.g. Vehicle has shift() method

– Bike.shift()/Car.shift() behave differently

– Possible to call shift() on any Vehicle

– Car/Bike can always be upcast to Vehicle

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 22

Generics

● Can be used to create class “families”
● E.g. Container class:

– public class Container<T> { … }

– Can be used as Container<String>, Container<Int>,
Container<Other>, …

● Advantages:
– Less repetitive code (one container for all types)
– Less runtime errors (Container<String> can only ever contain

String objects)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 23

Object-Oriented Design

● Goal: modularize a system specification
● Decompose/subdivide system by objects which are (supposed

to be) manipulated
● Question: how to find these objects?

– Data-driven design
– Responsibility-driven design

● Important: iterative process!

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 24

Data-Driven Design (1)

● Focus on the data an object contains
– E.g. Student class has name, id, courses, …

– Course has name, teacher, requirements, …

● Classes (usually) match real-world objects
● Subclasses match real-world categories

– E.g. Student is a subclass of Person,
Lecture is a subclass of Course, …

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 25

Data-Driven Design (2)

● Problem: where to put actual “business logic”?
– Usually solved by central “manager” class
– (Somewhat) contrary to core OOP concepts

● Mostly suited for database-like apps (e.g. store inventory,
university management, …)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 26

Responsibility-Driven Design

● Focus on the functions an object performs
– Find candidate classes in system architecture
– Determine responsibilities of each class
– Determine collaboration between objects

● Classes have less connection to real world, e.g.
OrderProcessor, CourseCatalogue

● Subclasses now reflect common behaviour

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 27

RDD – Finding Candidate Classes

● Candidate classes come from nouns …
– in the system specification
– during discussion
– in background knowledge

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 28

RDD – Finding Candidate Classes

The student council wants to install a Jukebox in the student
center. The Jukebox must allow students to play a song. No
money will be required. Instead, a student will swipe an ID
card through a card reader, view the song collection and
choose a song. Students will each be allowed to play up to
1500 minutes worth of "free" Jukebox music in their academic
careers, but never more than two songs on any given date. No
song can be played more than five times a day.

Source (FU): https://www2.cs.arizona.edu/~mercer/Presentations/OOPD/12-RDD-Jukebox.pdf

https://www2.cs.arizona.edu/~mercer/Presentations/OOPD/12-RDD-Jukebox.pdf
http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 29

RDD – Finding Candidate Classes

● Candidates:
– From spec: student council, jukebox, student center, students, song,

money, ID card, card reader, song collection, two songs, 1500
minutes, music, academic career, date, five times a day.

– From context: stereo, amplifier, speaker?

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 30

RDD – Finding Candidate Classes

● Guidelines:
– One word for one concept: song, music → Song;

students, ID card → Account

– Model values of attributes, not attributes themselves: 1500
minutes, two songs, 5 times per day attributes of → Song /
Account

– Be wary of adjectives: not applicable here, usually also attributes
instead of separate classes

– Focus on the problem domain: student council, student center,
money, speaker, … not applicable→

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 31

RDD – Determine Responsibilities

● Responsibilities are:
– The knowledge a class maintains/provides
– The actions it can perform

● Responsibilities == “public services”
– Basic client-server approach

● Every class can be …
– A client, using services of other classes
– A server, providing services to other classes

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 32

RDD – Determine Responsibilities

● E.g. responsibilities of Song:

– Play (but only max. 5 times a day)

● Account:

– ChooseSong (but only 2 times a day)

● Jukebox:

– Login (if confirmed by ID card)

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 33

RDD – Determine Collaborations

● Which class needs which other service?
– Jukebox may need AccountManager,

– Song may need DateTime & Database, …

● Collaborations reveal control/data flow
● Collaborations can uncover missing functions

http://creativecommons.org/licenses/by-nc-sa/4.0/

20/04/20 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 34

Questions/suggestions?

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

