
Software Architecture
Front-End, Microservices, and Backend

William M. Mongan

Microservices and Service-Oriented
Architectures

Service Oriented Computing (SOC) is a movement
towards an implementation-independent architecture
for distributed computing.

Rather than an object-based design and functionality,
Service Oriented Architecture (SOA) raises the level of
abstraction towards higher level business logic.

2

A Typical Scenario

A small company is currently using separate in-house
proprietary systems to process orders, charge credit
cards, check inventory and ship products.
Data is exchanged from one department to the other via hand-
written e-mails, though the inventory and shipping departments
were recently integrated and sharing messages using a
proprietary format over TCP.

3

Why SOA

In this example, departments only expose the highest
level of business logic that each needs to share.

For example, the shipping department need only know
that the credit card transaction was approved and the
shipping address provided by the customer.

4

Bottom Up vs. Top Down Design

Although SOA allows for a bottom-up design amicable
to the integration of legacy systems, the real benefit is
realized from a top-down, implementation-independent
approach.

5

Bottom Up vs. Top Down Design

By using schemas to define abstract data types and to
define business-logic operations in terms of these
abstract types, a complete interface is derived for a
system that naturally hides implementation details and
business secrets.

The design hides the implementation: Services
only provide their public interfaces to one another.

6

So What?

Imagine services as a pipeline, or assembly line, through
which business logic is realized.

If a service (i.e. the shipping department) was
outsourced to a third party, only the service contract
and the surrounding clients that invoke it need to be
changed.
• The new shipping company does not want to disclose private information such

as its sub-contractors and charges.

• Only the invocation requirements, message format, and data parameters are
exposed by the contract.

7

Advantages to SOA

Services are discoverable and dynamically bound;
Services are self-contained and modular;
Services stress interoperability;
Services are loosely coupled;
Services have a network-addressable interface;
Services have coarse-grained interfaces;
Services are location transparent;
Services are composable;
Service-oriented architecture supports self-healing.

8

Service Composition

Because services are a primitive unit in SOA, they
can be composed just as objects are in the OO
paradigm to create new applications according to
business processes.
Unlike objects, services are also registered with a
name service that can be searched.
In this way, services can be dynamically found, bound,
and consumed at runtime.
An interesting and open problem is to dynamically bind to
services based on a semantic query.

9

Service Flexibility

This flexibility facilitates a heterogeneous and
asynchronous service environment.

Of course, one requirement is that the decision must be
made and agreed upon by the service and caller.

10

Example SOAP Request and
Response

11

CASE STUDY: REPORTAL

12

Case Study: REportal

REportal is a service-based reverse engineering portal.

Users may upload code to REportal and perform RE
analysis, without needing to install, configure and run
individual tools.

13

Brief History

REportal 1.0 was based on Java Servlets, but the
presentation layer was tightly coupled to the tools.

The tools quickly became obsolete, and others simply didn’t
work, hindering the functionality.

Browser wars were a big problem during this time as well.

14

REportal 2.0

REportal 2.0 is based on web services. This was
chosen because the architecture decouples the
interface from the tools.
Relationships between tools are based on data via
message passing in XML.
This makes it easy to
Maintain existing tools.
Add new (legacy) tools by simply turning them into a
service.
Take advantage of SOA security, automatic binding,
distributed computing, and other features.

15

16

The Tools (Services)

REportal Application Layer
Bunch Wrapper
Static Analyzer
Source Code Browser
Text Search
Aspect Instrumentation
Project Manager
Database Layer

17

The Tools

REportal Application Layer
This is the presentation layer, where JSP pages reside. The JSP pages
invoke services to render functionality.

Bunch Wrapper
This is used by several services, whenever graphical data or an
MDG is produced. Bunch Wrapper clusters the graph and returns
a new graph.

18

The Tools

Static Analyzer
This is based on the BAT Static Analyzer for Java 1.5.
Given Java class file(s), BAT creates an XML repository with source
code relationships that exist between the entities.

• This needs to be improved to a database model for scalability.
• REportal queries the repository via XQuery and XSLT.

19

The Tools

Source Code Browser
This is based on the Sorcerer source code browser tool. It
provides a cross-referenced source index.
Currently, REportal downloads a zip file of web pages to the user.

• Ultimately, using Ajax, we will display this content on the fly,
rendering a seamless user interface!

Text Search
Grep

20

The Tools

Aspect Instrumentation
Using aspects, it is possible to instrument code to trace function
calls.
Doing this, we yield an MDG graph that can be viewed or clustered
to show runtime slices.

Project Manager and Database Layer
Using a database, tracks user logins and projects, including their
location on the file system.
They don’t have to reside on the same machine, but the database
provides absolute file paths on the Project Manager service’s file
system.

21

Sample Use Case: Adding a Project

22

Sample Service Definition: Adding a Project

23

Sample Service Interface: Adding a Project

24

Front-End Design and Presentation

25

CASE STUDY: THE IOT
SENSOR FRAMEWORK

26

Case Study: IoT Sensor Framework

This software suite contains scripts to collect and store IoT sensor data, such
as RFID tag information using an Impinj Speedway RFID reader.

The collection framework interfaces with a heterogeneous suite of devices in
real-time, and stores the data in a database or streaming service as defined by
the driver configuration.

A corresponding processing suite visualizes the real-time or archived data
collected by the collection framework, enabling rapid experimentation and
testing of machine learning algorithms on existing and new datasets.

Sensor fusion, ground truth, and data perturbation modules allow for
automated and controlled manipulation of the data sets and comparison to
ground truth.

It is modular and generalizable to a variety of sensor systems and processing
needs.

27

Layered Approach

28

Front-End, Microservices, Back-End

29

Microservice Implementation: Drivers

30

Microservice Implementation: Database

31

Database Schema

32

Microservice Composition

33

Case Study: IoT Sensor Framework

This software is available as an open source package for others to
use, modify (by forking the repository and issuing pull requests), and
contribute back.

• https://zenodo.org/record/3786933

• https://zenodo.org/record/3825126

34

https://zenodo.org/record/3786933
https://zenodo.org/record/3825126

Example: Reading RESTful Data

def retrieve_data(start, end):

global timescale

global db_password

global server

resp, content = sendhttp(server + '/api/iot/' + str(start *
timescale) + '/' + str(end * timescale), headerdict={'Content-Type':
'application/json'}, bodydict={'data': {'db_password': db_password}},
method='POST')

return resp, content

35

References
Mongan, W., Shevertalov, M., Mancoridis, S., “Re-engineering a Reverse Engineering
Portal to a Distributed SOA.” IEEE Proceedings of the 16th International Conference
on Program Comprehension (ICPC), 2008.

Mongan, W. “A Service-Based Web Portal for Integrated Reverse Engineering and
Program Comprehension.”

William M. Mongan, Ilhaan Rasheed, Enioluwa Segun, Henry Dang, Victor S. Cushman,
Charlie Rose Chiccarine, Kapil R. Dandekar, & Adam K. Fontecchio. (2020).
drexelwireless/iot-sensor-framework: Public Release 1.0 (v1.0). Zenodo.
https://doi.org/10.5281/zenodo.3786933

http://www.codeproject.com/Articles/28704/Programming-With-Exchange-Server-
2007-EWS-Part-1

http://www.w3schools.com/webservices/ws_soap_example.asp

36

http://www.codeproject.com/Articles/28704/Programming-With-Exchange-Server-2007-EWS-Part-1
http://www.w3schools.com/webservices/ws_soap_example.asp

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Case Study: REportal
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Case Study: The IOT Sensor Framework
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

