

NLiVE

NLiVE

Design Document

v 1.0

Authors: Kevin Galloway, Nicholas Goede,
James Hess, Brian Lawrence, William Mongan

Class:452

 Released 3-11-2005

History

Document History

Version Date of

Issue

Author Change & Reason of Change

V 0.1 2-14-2005 Kevin Galloway,

Nicholas Goede, James

Hess, Brian Lawrence,

William Mongan

Template Creation – Initial Version

V 0.2 2-18-2005 Kevin Galloway,

Nicholas Goede, James

Hess, Brian Lawrence,

William Mongan

Included various diagrams.. updated sections

V 0.3 2-22-2005 Kevin Galloway,

Nicholas Goede, James

Hess, Brian Lawrence,

William Mongan

Added low level DirectX Interaction design

V 0.4 2-28-2005 Kevin Galloway,

Nicholas Goede, James

Hess, Brian Lawrence,

William Mongan

Combined GUI, File Project section, modified sections

according to meeting

V 0.5 3-4-2005 Kevin Galloway,

Nicholas Goede, James

Hess, Brian Lawrence,

William Mongan

Modified low level DirectX Interaction design and added

middle layer interaction design

V 0.6 3-7-2005 Kevin Galloway,

Nicholas Goede, James

Hess, Brian Lawrence,

William Mongan

Added additional diagrams in Appendix E, modified for

formatting issues, all requirement key included after

review. Middle and Lower Level design added. Final

update

V 1.0 3-11-2005 Kevin Galloway,

Nicholas Goede, James

Hess, Brian Lawrence,

William Mongan

Updates based of results of final review including flow

diagram and moving of various diagrams to different

sections.

Table of Contents

History... 2

Table of Requirement Keys .. 5

1. Introduction... 7

1.1. Purpose of the Document.. 7

1.2. Scope of the Document... 7

2. General description ... 8

2.1. Product Goal ... 8

2.2. Development Profile ... 8

2.3. Interfaces and interactions .. 8

2.4. Assumptions and Dependencies ... 8

3. System Architecture Overview... 9

Functional design .. 10

3.1. Application Layer ... 11

3.1.1. Application.. 11

3.1.2. Project ... 11

3.1.3. TimeLine... 12

3.1.4. Track ... 13

3.1.5. Transition .. 14

3.1.6. PositionedElement .. 14

3.1.7. TrackElement.. 14

3.1.8. Clip.. 15

3.1.9. AudioClip.. 15

3.1.10. VideoClip.. 15

3.1.11. TextClip .. 15

3.1.12. TextFormatingOptions.. 15

3.1.13. SourceBrowser.. 15

3.1.14. MediaSource ... 16

3.1.15. VideoSource.. 16

3.1.16. AudioSource ... 17

3.1.17. StillImageSource... 17

3.1.18. VideoFileSource ... 17

3.1.19. CameraSource ... 17

3.2. Adapter Layer ... 18

3.2.1. Project ... 18

3.2.2. Source ... 19

3.2.3. Render ... 19

3.2.3.1. Audio Render .. 21

3.2.3.2. Video Render .. 21

3.2.3.3. Text Render... 21

3.2.4. NLiVE Exception.. 22

3.3. Direct X Interaction Layer .. 23

3.3.1. Project ... 23

3.3.2. Source ... 24

3.3.3. Render ... 24

3.3.3.1. Audio Render .. 26

3.3.3.2. Video Render .. 26

3.3.3.3. Text Render... 26

3.3.4. DirectX Exception .. 27

3.3.5. User Interface.. 28

3.3.6. Hardware Interface.. 35

3.3.7. Operating system interfaces.. 35

3.3.8. Software Interface... 35

3.4. Performance .. 35

Appendix A - Definitions.. 36

Appendix B - Abbreviations ... 36

Appendix C – References ... 36

Appendix D – NLiVE File Format Definition.. 36

Table of Requirement Keys
nlive_newproject 11
nlive_loadproject 11
nlive_compose 12
nlive_saveproject 12
nlive_saveprojectas 12
nlive_track_add_track 12
nlive_track_remove_track 12
nlive_default_audio 12
nlive_selected_text_clip_change_track 13
nlive_selected_text_clip_move 13
nlive_clip_timeline_placement 13
nlive_clip_movement 13
nlive_blendclip 13
nlive_audio_clear_track 13
nlive_texttrack_delete 13
nlive_blendimage 13
nlive_transition 14
nlive_transition_preview 14
nlive_clip_start 14
nlive_clip_end 14
nlive_preview_clip_command 14
nlive_preview_stop 14
nlive_preview_pause 14
nlive_change_frame 14
nlive_clip_alpha 14
nlive_name_media_clip 15
nlive_audio_clip 15
nlive_clip_resolution 15
nlive_resize 15
nlive_resize_display 15
nlive_texttrack_add 15
nlive_edit_text_for_clip 15
nlive_source_browser 16
nlive_import 16
nlive_cut 16
nlive_auto_audio_clip 17
nlive_file_mp3 17
nlive_file_wav 17
nlive_still_image_as_video 17
nlive_file_avi support 17
nlive_file_mpeg1 17
nlive_file_dv 17
nlive_capture 17
nlive_preview_output_command 31
nlive_preview_output_display 31
nlive_preview_clip_display 31
nlive_clip_preview 31
nlive_import_command 31
nlive_import_command_dialog 31
nlive_audio_clip_removal 31
nlive_clip_timeline_view 31
nlive_transition_postion 31
nlive_track_select_clip 31

nlive_text_clip_select 31
nlive_option_pane 32
nlive_option_pane_texttrack 32
nlive_option_pane_texttrack_effects 32
nlive_blendimage_command 32
nlive_blendimage_command_dialog 32
nlive_blendclip_command 32
nlive_blendclip_command_dialog 32
nlive_transition_command 32
nlive_transition_timeline_beginning 32
nlive_transition_dialog 32
nlive_transition_timeline_ending 32
nlive_clip_properties_alpha 32
nlive_clip_properties_resolution 32
nlive_cut_command 32
nlive_texttrack_add_command 32
nlive_texttrack_respond 32
nlive_transition_view 32
nlive_name_media_source 32
nlive_compose_command 32
nlive_compose_dialog 32
nlive_compose_progress 32
nlive_capture_command 32
nlive_capture_command_dialog 32
nlive_newproject_command 32
nlive_newproject_command_dialog 32
nlive_loadproject_command 32
nlive_loadproject_command_dialog 32
nlive_saveproject_command 32
nlive_saveproject_command_dialog 32
nlive_saveprojectas_command 32
nlive_saveprojectas_command_dialog 32
nlive_requirements_hardware 35
nlive_requirements_hardware_camera_support 35
nlive_requirements_hardware_harddrive 35
nlive_requirements_hardware_memory 35
nlive_requirements_hardware_processor 35
nlive_requirements_hardware_video 35
nlive_requirements_os 35
nlive_requirements_software_directx 35
nlive_system_stability 35

1.Introduction

1.1. Purpose of the Document

This document identifies functional elements related to the NLiVE application and

describes the implementation of these elements. The element description shall be of

sufficient detail to verify design goals and thus serve as the guideline to the

implementation of the NLiVE application. This document also forms the basis for

developing test code for the NLiVE application.

1.2. Scope of the Document

This document describes the functionalities that are present in the NLiVE application. It

also describes in detail the various classes that implement these functionalities and the

software interfaces associated with this application.

2.General description

2.1. Product Goal

The Goal of the NLiVE application is to provide a non-linear video editor containing

many of the features and functionality of other high-end commercially available video

editors without the high costs involved.

2.2. Development Profile

This project makes use of the DirectShow library that is part of Microsoft DirectX. The

QuickTime libraries from Apple were also considered to fill this role. The major reasons

to choose DirectX over QuickTime include limited ability of the QuickTime libraries to

output in any other format than QuickTime’s proprietary MOV format and DirectX’s

greater support on Microsoft Windows.

The application is developed in a two layers plus glue architecture. What this means is

that their is a lower level library that wraps and simplifies the DirectX library and

functionality, a glue layer to make it interoperate correctly with the top layer, and a top

layer that acts as a client to the library and actually is the application the user uses. This

architecture was chosen because DirectX’s DirectShow library has limited

interoperability with C# and thusly the lowest level library is done in C++ with the

application layer being programmed in C#. The reason for this choice over doing the

entire application in C++ is because of C#’s greater tools and ease of use for GUI

making, more and better programming tools available to us for C#, and general

programmer ease of use over C++.

The lower level library and its attached glue library can be thought of as an Adapter

pattern for converting DirectShow’s COM interface to a C# compatible .NET interface.

It can also be seen as a Facade pattern since it only exposes the functionality of

DirectShow needed by the application.

2.3. Interfaces and interactions

The NLiVE application uses the .NET library file input/output mechanisms. The DirectX

libraries are interacted with and are used in order to communicate with an external DV

based Digital Video Camera.

2.4. Assumptions and Dependencies

The NLiVE application runs under the assumptions and dependencies laid out in the

requirements document.

3.System Architecture Overview

The NLiVE application consists of multiple layers to provide the functionality required in

a standalone non-linear video editor application. The following diagram provides an

overview of those layers.

Figure 1 - NLiVE Package Diagram

Each layer provides the platform needed to utilize the functionality that each layer

environment provides. For example the DirectXInteractionLayer provides a C++ layer

compatible with Direct X’s DirectShow while the AdapterLayer acts as a gateway

allowing the Application Layer to communicate with the DirectShow functionality

through the AdapterLayer.

Functional design

Each section contains the design details including class diagrams laying out the

functional classes of the NLiVE application. The NLiVE application consists of multiple

layers. Each layer has its own set of classes.

The following flow diagram provides an overview of how all the classes between and

within the layers work together.

Figure 2 - Flow diagram of the major classes in NLiVE.

3.1. Application Layer

Figure 3 – NLiVE Application Layer Class Diagram

3.1.1. Application

This class is responsible for making new projects and loading existing projects. It also

tracks the currently loaded project.

This class implements the following requirements:
nlive_newproject

nlive_loadproject

This class has the following methods:

� NewProject() : Project :

o Pre-conditions: None

o Post-conditions: A valid empty Project object is returned

� LoadProject(String path) : Project:

o Pre-conditions: path is a valid path and points to an existing valid NLiVE

project save file.

o Post-conditions: A valid Project object containing the data in the NLiVE

project save file pointed to by path.

3.1.2. Project

This class is responsible for containing the TimeLine and for saving projects to NLiVE

project save files as well as previewing and generating the output movie.

This class implements the following requirements:
nlive_compose

nlive_saveproject

nlive_saveprojectas

This class has the following methods:

� Save(String Path) : void:

o Pre-conditions: path points to a valid location for the NLiVE project save

file to be written to.

o Post-conditions: A file is created or if already present overwritten with an

NLiVE project save file created using the data in this Project object.

� Preview() : void:

o Pre-conditions: None

o Post-conditions: A video is played by the system that is representative of

the output of the Compose() method.

� Compose(string Destination, Type): void:

o Pre-conditions: Destination is a valid path for the output video file to be

written to and Type is a valid video output type.

o Post-conditions: An output file is created of the type specified and

contains the output according to the current TimeLine of this Project

object. If the TimeLine is empty then the shortest valid video file of the

type specified is created. This output file plays in a media player capable

of playing this video.

3.1.3. TimeLine

This class is responsible for containing and administering the various tracks. It also must

maintain an association between a video track and its ‘default’ audio track.

This class implements the following requirements:
nlive_track_add_track

nlive_track_remove_track

nlive_default_audio

This class has the following methods:

� AddTrack(Track track) : unsigned int

o Pre-conditions: track is a valid track.

o Post-conditions: The Track object track is added to the TimeLine and a

valid ID for that track is returned.

� RemoveTrack(int trackID) : void

o Pre-conditions: trackID represents a track stored in the TimeLine.

o Post-conditions: The track that has an ID of trackID is removed from the

TimeLine.

� GetTrack(int trackID) : Track

o Pre-conditions: trackID represents a track stored in the TimeLine.

o Post-conditions: Returns the Track object represented in the TimeLine by

trackID.

3.1.4. Track

This class represents a track or a time ordered set of TrackElement objects and Transition

objects. It contains the functionality to manipulate this set as well as obtain elements

from it.

This class implements the following requirements:
nlive_selected_text_clip_change_track

nlive_selected_text_clip_move

nlive_clip_timeline_placement

nlive_clip_movement

nlive_blendclip

nlive_audio_clear_track

nlive_texttrack_delete

nlive_blendimage

This class has the following methods:

� AddTrackElement(TrackElement element, Location position) : void

o Pre-conditions: element is a valid element and position is a valid position.

o Post-conditions: The element is placed on the track in the position

specified.

� RemoveTrackElements(in elements:list<TrackElements>) :

list<PostionedElement>

o Pre-conditions: elements is a valid list. Every contained TrackElement

object is valid.

o Post-conditions: Every TrackElement object in the list is removed from

the Track and the corresponding PostionedElements returned.

� GetTrackElements(Time startRange, Time endRange) : list<PositionedElements>

o Pre-conditions: startRange and endRange are valid times.

o Post-conditions: Returns all PositionedElements that lie within the time

range given by startRange and endRange as a list.

� AddTransition(Transition transition) : void

o Pre-conditions: transition is a valid Transition object and is for clips

currently on this Track object.

o Post-conditions: Adds transition to this Track object.

� RemoveTransition(Transition transition) : void

o Pre-conditions: transition is in the Track.

o Post-conditions: transition is removed from the Track.

� GetTransition(Time startRange, Time endRange) : list<Transition>

o Pre-conditions: startRange and endRange are valid times.

o Post-conditions: Returns a list of all Transtions between the time of

startRange and endRange

� Clear() : void

o Pre-conditions: None.

o Post-conditions: All elements and transitions are removed from this Track.

3.1.5. Transition

This class represents a Transition and its before and after clips as well as its type. If

either the start or end clip is null then the transition is at the beginning of the track or end

of the track Transition.

This class implements the following requirements:
nlive_transition

nlive_transition_preview

This class has the following methods:

� Preview() : void :

o Pre-conditions: None

o Post-conditions: The transition is displayed as a preview that approximates

the result that would be outputted via Preview.Compose()

3.1.6. PositionedElement

This class represents a TrackElement object with an associated position in time.

This class implements the following requirements:
nlive_clip_start

nlive_clip_end

3.1.7. TrackElement

This class represents a non-transition object that can appear on a track.

This class implements the following requirements:
nlive_preview_clip_command

nlive_preview_stop

nlive_preview_pause

nlive_change_frame

nlive_clip_alpha

This class has the following methods:

� Preview() : void :

o Pre-conditions: None

o Post-conditions: The TrackElement is displayed as a preview that

approximates the result that are outputted via Preview.Compose() for this

TrackElement object.

� Stop() : void:

o Pre-conditions: None

o Post-conditions: Sets current state of preview for this TrackElement to

stop and resets the frame to the starting position.

� Pause() : void:

o Pre-conditions: None

o Post-conditions: Sets current state of preview for this TrackElement to

stop.

3.1.8. Clip

Represents a clip of some part of a media source or a TextClip.

This class implements the following requirements:
nlive_name_media_clip

3.1.9. AudioClip

Represents a clip of an AudioSource.

This class implements the following requirements:
nlive_audio_clip

3.1.10. VideoClip

Represents a clip of a VideoSource and associated properties.

This class implements the following requirements:
nlive_clip_resolution

nlive_resize

nlive_resize_display

3.1.11. TextClip

Represents a piece of Text in clip form and tracks possible effects.

This class implements the following requirements:
nlive_texttrack_add

nlive_edit_text_for_clip

� EditText(String text) : String :

o Pre-conditions: None.

o Post-conditions: Sets TextClip object’s text string to text and returns the

current value.

3.1.12. TextFormatingOptions

Stores and allows the changing of Text Formatting Options

3.1.13. SourceBrowser

Represents a set of MediaSources and has a Factory Method to make them from file paths

or to create a CameraSource from a DV camera.

This class implements the following requirements:
nlive_source_browser

nlive_import

� ImportFile(String path) : MediaSource

o Pre-conditions: path is a valid path and is a valid media file.

o Post-conditions: Uses information from the path to create the correct type

of MediaSource and returns it.

� Capture() : MediaSource

o Pre-conditions: a functioning camera is connected and ready to import

video.

o Post-conditions: A valid CameraSource is created and returned.

3.1.14. MediaSource

Represents a media source and acts as an Abstract Factory for creating Track Elements

via the Clip method. Also allows for playing MediaSources.

This class implements the following requirements:
nlive_cut

� Play() : void :

o Pre-conditions: None

o Post-conditions: The MediaSource is played for the user.

� Stop() : void:

o Pre-conditions: None

o Post-conditions: Sets current state of playing for this MediaSource to stop

and resets the frame to the starting position.

� Pause() : void:

o Pre-conditions: None

o Post-conditions: Sets current state of playing for this MediaSource to stop.

� Clip(Time startTime, Time endTime) : TrackElement:

o Pre-conditions: startTime and endTime are ordered such that endTime is

later and startTime and endTime both lie within the bounds of the length

of the MediaSource.

o Post-condition: Returns a valid TrackElement object.

3.1.15. VideoSource

Parent Class for all Video based MediaSources

This class implements the following requirements:

nlive_auto_audio_clip

3.1.16. AudioSource

Class that represents an Audio file.

This class implements the following requirements:
nlive_file_mp3

nlive_file_wav

3.1.17. StillImageSource

Class that represents a still image file.

This class implements the following requirements:
nlive_still_image_as_video

3.1.18. VideoFileSource

Class that represents a video file.

This class implements the following requirements:
nlive_file_avi support

nlive_file_mpeg1

nlive_file_dv

3.1.19. CameraSource

Class that represents a DV camera.

This class implements the following requirements:
nlive_capture

3.2. Adapter Layer

The adapter layer is functionally very similar to the DirectX library layer, per the

specifications of the Managed Wrapper. One notable difference is that the return values

of modules in the Adapter layer are members of the Application layer. At the DirectX

library layer, the return values are DirectX COM objects of similar names.

Figure 4 - NLiVE Adapter Layer Class Diagram

3.2.1. Project

Project represents the liaison between the application layer and the DirectX library layer.

It directs requests to all rendering modules of this layer.

This module corresponds most directly with the following application layer modules:

Project

Timeline

� Project() : void :

o Pre-conditions: A Lower layer project has not been created before.

o Post-conditions: A Project with an empty timeline are created for the user.

� loadProject(filename: String) : void:

o Pre-conditions: None

o Post-conditions: The specified project name is loaded from disk and the

low level representation is created.

� saveProject(filename: String) : void:

o Pre-conditions: A project exists in memory.

o Post-conditions: The project is serialized and saved to disk.

3.2.2. Source

Source is responsible for interfacing with the DV camera and retrieving audio and video

which can be converted into tracks.

This module corresponds most directly with the following application layer modules:

CameraSource

� getFromCamera() : void :

o Pre-conditions: The DV Camera has been hooked up to the system and has

created a project.

o Post-conditions: The video is read from the camera to an internal

representation. The audio or video are extracted by getAudio() and

getVideo(), respectively.

� getAudio() : void:

o Pre-conditions: The DV Camera has been hooked up to the system and has

created a project.

o Post-conditions: getFromCamera() is called if it has not been called

already, and the audio is extracted as a Track.

� getVideo() : void:

o Pre-conditions: The DV Camera has been hooked up to the system and has

created a project.

o Post-conditions: getFromCamera() is called if it has not been called

already, and the video is extracted as a Track.

3.2.3. Render

Render is responsible for overseeing the rendering and video previewing process. It is an

abstract class, implemented by AudioRender, VideoRender and TextRender to complete

the various specific tasks.

This module corresponds most directly with the following application layer modules:

TrackElement

Clip

� addEffect(clip : Clip, effect : enum) : void :

o Pre-conditions: A project with clips has been created.

o Post-conditions: The given effect has been added to the specified clip.

� removeTrack(track:Track) : void:

o Pre-conditions: None

o Post-conditions: The specified track is removed, leaving an empty default

track.

� addClip() : void:

o Pre-conditions: None

o Post-conditions: A clip is added to the track associated with the module

(text, audio or video).

� removeClip(clip: Clip) : void:

o Pre-conditions: None

o Post-conditions: The specified clip is removed from the track.

� addSource() : void:

o Pre-conditions: None

o Post-conditions: A file or camera source is opened for extraction.

� addTransition(clip1:Clip, clip2:Clip, transition:enum) : void:

o Pre-conditions: At least one clip exists on the track (if only one track

exists, then a fade to or from black is desired).

o Post-conditions: The given transition is applied to the clip(s).

� removeEffect(effect:Effect)

o Pre-conditions: The given effect exists on the timeline.

o Post-conditions: The given effect is removed.

� moveClip(clip:Clip, time:Time)

o Pre-conditions: The given clip exists on the timeline, and the given

destination time space is available on the timeline.

o Post-conditions: The given clip is moved to the desired place.

� play()

o Pre-conditions: None

o Post-conditions: The video is rendered for preview via a call to

renderProject().

� pause()

o Pre-conditions: The video is playing

o Post-conditions: The video is stopped.

� seek(time:Time)

o Pre-conditions: None

o Post-conditions: The playback position is moved to the given time, if time

is in [0, project.length].

� renderProject()

o Pre-conditions: None

o Post-conditions: The video is rendered.

� removeSource(source:Source)

o Pre-conditions: The given source exists in the project.

o Post-conditions: The given source is removed.

� removeTransition(transition:Transition)

o Pre-conditions: The given transition exists on the timeline.

o Post-conditions: The given transition is removed.

3.2.3.1. Audio Render

AudioRender is responsible for handling audio rendering tasks delegated from the Render

class.

This module corresponds most directly with the following application layer modules:

TrackElement

Clip

� addAudioToClip(filename:String, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given file source audio is loaded into the clip.

� addAudioToClip(source:Source, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given camera source audio is loaded into the clip.

3.2.3.2. Video Render

VideoRender is responsible for handling video rendering tasks delegated from the Render

class.

This module corresponds most directly with the following application layer modules:

TrackElement

Clip

� addVideoToClip(filename:String, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given file source video is loaded into the clip.

� addVideoToClip(source:Source, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given camera source video is loaded into the clip.

3.2.3.3. Text Render

TextRender is responsible for handling text rendering tasks delegated from the Render

class.

This module corresponds most directly with the following application layer modules:

TrackElement

Clip

� addTextToClip(text:Text, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given text is loaded into the clip with its

corresponding formatting flags.

3.2.4. NLiVE Exception

The NLive Exception class is responsible for interpreting exceptions thrown from the

DirectX library layer and, if necessary, passing them along to the application layer for

graceful handling.

3.3. Direct X Interaction Layer

The adapter layer is functionally very similar to the Adapter layer, per the specifications

of the Managed Wrapper. One notable difference is that the return values of modules in

the Adapter layer are members of the Application layer. At the DirectX library layer, the

return values are DirectX COM objects of similar names.

Figure 5 - NLiVE Direct X Layer Class Diagram

3.3.1. Project

Project represents the low level DirectX COM timeline and project data. It directs

requests to all rendering modules of this layer as they are initiated from the Adapter.

This module corresponds most directly with the following application layer modules:

Project

Timeline

� Project() : void :

o Pre-conditions: A Lower layer project has not been created before.

o Post-conditions: A Project with an empty timeline are created for the user.

� loadProject(filename: String) : void:

o Pre-conditions: None

o Post-conditions: The specified project name is loaded from disk and the

low level representation is created.

� saveProject(filename: String) : void:

o Pre-conditions: A project exists in memory.

o Post-conditions: The project is serialized and saved to disk.

3.3.2. Source

Source is responsible for interfacing with the DV camera and retrieving audio and video

which can be converted into tracks.

This module corresponds most directly with the following application layer modules:

CameraSource

� getFromCamera() : void :

o Pre-conditions: The DV Camera has been hooked up to the system and has

created a project.

o Post-conditions: The video is read from the camera to an internal

representation. The audio or video are extracted by getAudio() and

getVideo(), respectively.

� getAudio() : void:

o Pre-conditions: The DV Camera has been hooked up to the system and has

created a project.

o Post-conditions: getFromCamera() is called if it has not been called

already, and the audio is extracted as a Track.

� getVideo() : void:

o Pre-conditions: The DV Camera has been hooked up to the system and has

created a project.

o Post-conditions: getFromCamera() is called if it has not been called

already, and the video is extracted as a Track.

3.3.3. Render

Render is responsible for overseeing the rendering and video previewing process. It is an

abstract class, implemented by AudioRender, VideoRender and TextRender to complete

the various specific tasks.

This module corresponds most directly with the following application layer modules:

TrackElement

Clip

� addEffect(clip : Clip, effect : enum) : void :

o Pre-conditions: A project with clips has been created.

o Post-conditions: The given effect has been added to the specified clip.

� removeTrack(track:Track) : void:

o Pre-conditions: None

o Post-conditions: The specified track is removed, leaving an empty default

track.

� addClip() : void:

o Pre-conditions: None

o Post-conditions: A clip is added to the track associated with the module

(text, audio or video).

� removeClip(clip: Clip) : void:

o Pre-conditions: None

o Post-conditions: The specified clip is removed from the track.

� addSource() : void:

o Pre-conditions: None

o Post-conditions: A file or camera source is opened for extraction.

� addTransition(clip1:Clip, clip2:Clip, transition:enum) : void:

o Pre-conditions: At least one clip exists on the track (if only one track

exists, then a fade to or from black is desired).

o Post-conditions: The given transition is applied to the clip(s).

� removeEffect(effect:Effect)

o Pre-conditions: The given effect exists on the timeline.

o Post-conditions: The given effect is removed.

� moveClip(clip:Clip, time:Time)

o Pre-conditions: The given clip exists on the timeline, and the given

destination time space is available on the timeline.

o Post-conditions: The given clip is moved to the desired place.

� play()

o Pre-conditions: None

o Post-conditions: The video is rendered for preview via a call to

renderProject().

� pause()

o Pre-conditions: The video is playing

o Post-conditions: The video is stopped.

� seek(time:Time)

o Pre-conditions: None

o Post-conditions: The playback position is moved to the given time, if time

is in [0, project.length].

� renderProject()

o Pre-conditions: None

o Post-conditions: The video is rendered.

� removeSource(source:Source)

o Pre-conditions: The given source exists in the project.

o Post-conditions: The given source is removed.

� removeTransition(transition:Transition)

o Pre-conditions: The given transition exists on the timeline.

o Post-conditions: The given transition is removed.

3.3.3.1. Audio Render

AudioRender is responsible for handling audio rendering tasks delegated from the Render

class.

This module corresponds most directly with the following application layer modules:

TrackElement

Clip

� addAudioToClip(filename:String, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given file source audio is loaded into the clip.

� addAudioToClip(source:Source, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given camera source audio is loaded into the clip.

3.3.3.2. Video Render

VideoRender is responsible for handling video rendering tasks delegated from the Render

class.

This module corresponds most directly with the following application layer modules:

TrackElement

Clip

� addVideoToClip(filename:String, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given file source video is loaded into the clip.

� addVideoToClip(source:Source, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given camera source video is loaded into the clip.

3.3.3.3. Text Render

TextRender is responsible for handling text rendering tasks delegated from the Render

class.

This module corresponds most directly with the following application layer modules:

TrackElement

Clip

� addTextToClip(text:Text, clip:Clip)

o Pre-conditions: The given clip exists on the timeline.

o Post-conditions: The given text is loaded into the clip with its

corresponding formatting flags.

3.3.4. DirectX Exception

The DirectX Exception class is responsible for receiving and interpreting errors thrown

by the DirectX COM library. If an exception can be handled at this layer, it is done

silently. Otherwise, it is passed to the Adapter layer for further processing or passing to

the Application layer for user interaction.

3.3.5. User Interface

The NLiVE application provides a windows based dockable User Interface. The

following figure provides a brief outline of the Main GUI.

Figure 6 –NLiVE application Main GUI overview

The NLiVE application contains the following Visual Components in the GUI.

� Preview area

o Play, stop, pause. Etc

nlive_preview_stop

nlive_preview_pause

o Frame stepping buttons

nlive_change_frame

o Frame and time display

nlive_change_frame

o Preview window

nlive_clip_preview

nlive_transition_preview

nlive_preview_output_command

nlive_preview_output_display

nlive_preview_clip_display

o Preview slider bar

nlive_clip_end

nlive_clip_start

o Compose button

nlive_compose_command

o Toggle switch between clip and project

nlive_preview_output_display

nlive_preview_clip_display

� Source browser

nlive_source_browser

o File type differential (drop down)

Non-required widget used for sorting.

o Thumbnails of media

Allows user to select media sources for: nlive_name_media_clip,

and nlive_clip_preview.

o Import new sources button

nlive_import_command

nlive_import_command_dialog

� Time line

o Add track, delete track

nlive_track_add_track

nlive_audio_clip_removal

o Tracks

nlive_clip_timeline_placement

nlive_clip_timeline_view

nlive_clip_preview

nlive_transition_postion

nlive_text_clip_select

o Track type list

nlive_track_add_track

o Graduations of time

Non-required, used to denote time associated with location on

timeline slider bar.

o Timeline slider bar

nlive_clip_timeline_placement

o Change scale of timeline zoom in/zoom out

nlive_transition_postion

o Mark Begin/End

nlive_clip_start

 nlive_clip_end

nlive_track_select_clip

� Option pane

nlive_option_pane

nlive_option_pane_texttrack

nlive_transition_view

nlive_clip_properties_resolution

o Tabs of modes/functions (text, video, sound)

nlive_option_pane_texttrack_effects

o Properties of actions to be taken for video, pictures, sound, and text

� Blend image button

nlive_blendimage_command

nlive_blendimage_command_dialog

� Blend clip button

nlive_blendclip_command

nlive_blendclip_command_dialog

� Add transition before clip

nlive_transition_command

nlive_transition_dialog

nlive_transition_timeline_beginning

� Add transition after clip

nlive_transition_command

nlive_transition_dialog

nlive_transition_timeline_ending

� New output resolution

nlive_clip_resolution

� Constrain aspect ratio

Non required, allows user to automatically maintain aspect

ratio while changing resolution

� Alpha transparency

nlive_clip_properties_alpha

� Alpha channels settings

nlive_clip_properties_alpha

� Alpha channel selector

nlive_clip_properties_alpha

� Clip start time/end time

Location of clip along timeline.

� Text time begin/end

Required for setting duration of text overlay.

� Text position start/end

Required for functionality of animated text, and positioning

of text on screen.

� Text Richtext box

nlive_edit_text_for_clip

nlive_texttrack_add_command

nlive_texttrack_respond

� Selectors for font, font size, and font style (bold, italic, underline),

font color.

Not required, but useful for formatting text to appear on

screen.

� Edit start time and start frame

nlive_clip_start

� Edit end time and end frame

nlive_clip_end

� Cut button

nlive_cut_command

� Text effects (fade in/out, blink)

nlive_option_pane_texttrack_effects

� Resize method selector

nlive_resize_display

� Transitions tab

Facilitates the selection of available transitions.

� Menu bar

o All file operations

nlive_import

nlive_name_media_source

nlive_capture_command

nlive_capture_command_dialog

o All project operations

nlive_newproject_command

nlive_newproject_command_dialog

nlive_loadproject_command

nlive_loadproject_command_dialog

nlive_saveproject_command

nlive_saveproject_command_dialog

nlive_saveprojectas_command

nlive_saveprojectas_command_dialog

o Exit

Gives user ability to exit NLiVE.

o Export operations

nlive_compose_command

nlive_compose_dialog

nlive_compose_progress

o Help

The Preview area GUI component exclusively implements the following requirements:
nlive_preview_output_command

nlive_preview_output_display

nlive_preview_clip_display

nlive_clip_preview

The Source browser GUI component exclusively implements the following requirements:
nlive_import_command

nlive_import_command_dialog

The Time line GUI component exclusively implements the following requirements:
nlive_audio_clip_removal

nlive_clip_timeline_view

nlive_transition_postion

nlive_track_select_clip

nlive_text_clip_select

The Option pane GUI component exclusively implements the following requirements:

nlive_option_pane

nlive_option_pane_texttrack

nlive_option_pane_texttrack_effects

nlive_blendimage_command

nlive_blendimage_command_dialog

nlive_blendclip_command

nlive_blendclip_command_dialog

nlive_transition_command

nlive_transition_timeline_beginning

nlive_transition_dialog

nlive_transition_timeline_ending

nlive_clip_properties_alpha

nlive_clip_properties_resolution

nlive_cut_command

nlive_texttrack_add_command

nlive_texttrack_respond

nlive_transition_view

The Menu bar GUI component exclusively implements the following requirements:
nlive_name_media_source

nlive_compose_command

nlive_compose_dialog

nlive_compose_progress

nlive_capture_command

nlive_capture_command_dialog

nlive_newproject_command

nlive_newproject_command_dialog

nlive_loadproject_command

nlive_loadproject_command_dialog

nlive_saveproject_command

nlive_saveproject_command_dialog

nlive_saveprojectas_command

nlive_saveprojectas_command_dialog

The following sequence diagrams provide an overview of how the GUI components

interact with the user and various classes defined in the application layer.

Figure 7- NLiVE New Project / Import Media File Sequence Diagram

Figure 8 - NLiVE Cut to Timeline Sequence Diagram

Figure 9 - NLiVE Add Track/Assign Clip Sequence Diagram

Figure 10 – NLiVE Transition Between Clips Sequence Diagram

The following diagram provides an overview of the interactions a user would take to

perform various tasks with detail related to the project (ie save, load, etc..).

Figure 11 - NLiVE Project Interaction Diagram

3.3.6. Hardware Interface

The NLiVE application requires that the hardware satisfies the minimum requirements

specified by the following:

1. Functional Computer including Monitor, Mouse, Keyboard and audio output

device

2. Minimum 1.5 GHz processor (Pentium 4 or equivalent)

3. Minimum 256 MB Ram

4. DirectX 7 compatible video card

5. Minimum 200 MB of free space

If this list is satisfied the following requirements will be fulfilled:
nlive_requirements_hardware

nlive_requirements_hardware_camera_support

nlive_requirements_hardware_harddrive

nlive_requirements_hardware_memory

nlive_requirements_hardware_processor

nlive_requirements_hardware_video

3.3.7. Operating system interfaces

The NLiVE application makes no direct calls to the Operating System.

It is assumed that NLiVE will be run under a supported operating system as defined by

the following requirement:
nlive_requirements_os

3.3.8. Software Interface

The NLiVE application utilizes Microsoft’s DirectX 9.0c and is designed to run with this

and later versions. The details of the class interactions that utilize this API are described

in the Direct X Layer functional design section.

The following requirement is fulfilled through this interaction:
nlive_requirements_software_directx

3.4. Performance

The NLiVE application will not consume any unnecessary processor or memory

resources.

The NLiVE application is implemented in a way that the following requirement will be

fulfilled:
nlive_system_stability

Appendix A - Definitions

Media Source: A video, image, or audio file that has been imported into the

project.

Source Browser: A viewing and organizational area of the application containing

project specific, user imported media source.

Clip: A segment of a media source specified by the user.

NLiVE: Non-Linear Video Editor – name of this application and project

Track: A chronological container of clips that allows per specification of

duration.

Timeline: This is the overview representation of the project. The timeline shows

the media project as a combination of video, audio and text tracks as defined

above.

Appendix B - Abbreviations

GUI – Graphical User Interface

Appendix C – References

1. NLiVE: NLiVE Requirement Specification. V 1.0, February 16
th
, 2005.

2. Tom Pender: UML Bible. John Wiley & Sons, 2003.

3. Andrew Filev: Professional UML with Visual Studio .NET. Wrox Press, 2002.

4. DirectX XTL Reference – (XML Schema)

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/directshow/htm/xmlreference.asp

Appendix D – NLiVE File Format

Definition

The NLiVE project file format is based on an Extensible Markup Language (XML)

persistence format, called XTL. The NLiVE application utilizes the base elements

provided by XTL and adds additional elements and attributes as defined in table 1.

Please Appendix C for the location of the XTL Reference that provides the XML Schema

for the base XTL provided by Microsoft’s DirectShow.

XTL provides the following base elements:

(Children are shown)

XTL provides the following base attributes:

Attribute [element applies to]

• at

• clip

o effect

• composite

o composite

o track

o effect

o transition

• effect

o param

• group

o composite

o effect

o track

• linear

• param

o at

o linear

• timeline (Must be root)

o group

• track

o clip

o effect

o transition

• transition

o param

• bitdepth [group]

• buffering [group]

• clsid [at, effect, transition]

• cutpoint [transition]

• cutsonly [transition]

• defaultfx [timeline]

• defaulttrans [timeline]

• enablefx [timeline]

• enabletrans [timeline]

• framerate [clip, group, timeline]

• height [group]

• lock [clip, composite, effect, group,

timeline, transition]

• mlength [clip]

• mstart [clip]

• mstop [clip]

• mute [clip, composite, effect,

group, timeline, transition]

• name [group,param]

• previewmode [group]

• samplingrate [group]

• src [clip]

• start [clip, effect, transition]

• stop [clip, effect, transition]

• stream [clip]

• stretchmode [clip]

• swapinputs [transition]

• time [at,linear]

• type [group]

• userdata [clip, composite, effect,

group, timeline, transition]

• userid [clip, composite, effect,

group, timeline, transition]

• username [clip, composite, effect,

group, timeline, transition]

• value [at, linear, param]

• width [group]

The NLiVE application adds these

additional elements in addition to

utilizing base elements provided by

The NLiVE application adds these

additional attributes in addition to

utilizing base attributes provided by

XTL. XTL.

• Source Browser

o clip

• Project

o Source Browser

o Timeline

o Preview Window

• Preview Window

• open [Project, Source Browser]

• closed [Project, Source Browser]

• xpos [Source Browser, Preview

Window]

• ypos [Source Browser, Preview

Window]

Table 1 - NLiVE Project File Format

